Is my use of Fatou's Lemma correct in this case?
$begingroup$
I am asked to determine:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
My idea:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=limsup_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}leqint_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
and $lim_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}=0$
Therefore, $int_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
Now note that $frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}geq0,$ for any $x in ]-infty,infty[$
This then implies that: $lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
real-analysis integration measure-theory convergence lebesgue-measure
$endgroup$
add a comment |
$begingroup$
I am asked to determine:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
My idea:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=limsup_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}leqint_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
and $lim_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}=0$
Therefore, $int_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
Now note that $frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}geq0,$ for any $x in ]-infty,infty[$
This then implies that: $lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
real-analysis integration measure-theory convergence lebesgue-measure
$endgroup$
add a comment |
$begingroup$
I am asked to determine:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
My idea:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=limsup_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}leqint_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
and $lim_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}=0$
Therefore, $int_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
Now note that $frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}geq0,$ for any $x in ]-infty,infty[$
This then implies that: $lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
real-analysis integration measure-theory convergence lebesgue-measure
$endgroup$
I am asked to determine:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
My idea:
$$lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=limsup_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}leqint_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}$$
and $lim_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}=0$
Therefore, $int_{-infty}^{infty}limsup_{nto infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
Now note that $frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}geq0,$ for any $x in ]-infty,infty[$
This then implies that: $lim_{nto infty}int_{-infty}^{infty}frac{1}{1+e^{nx}}e^{frac{-x^2}{n}}dlambda{x}=0$
real-analysis integration measure-theory convergence lebesgue-measure
real-analysis integration measure-theory convergence lebesgue-measure
edited Jan 27 at 8:34


Aweygan
14.7k21442
14.7k21442
asked Jan 27 at 8:29
MinaThumaMinaThuma
1968
1968
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Something is wrong. The pointwise limit should be
$$lim_{nto infty}frac{e^{frac{-x^2}{n}}}{1+e^{nx}}=
begin{cases}
0& text{if $x>0$,}\
1/2 &text{if $x=0$,}\
1 &text{if $x< 0$.}
end{cases}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089275%2fis-my-use-of-fatous-lemma-correct-in-this-case%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Something is wrong. The pointwise limit should be
$$lim_{nto infty}frac{e^{frac{-x^2}{n}}}{1+e^{nx}}=
begin{cases}
0& text{if $x>0$,}\
1/2 &text{if $x=0$,}\
1 &text{if $x< 0$.}
end{cases}$$
$endgroup$
add a comment |
$begingroup$
Something is wrong. The pointwise limit should be
$$lim_{nto infty}frac{e^{frac{-x^2}{n}}}{1+e^{nx}}=
begin{cases}
0& text{if $x>0$,}\
1/2 &text{if $x=0$,}\
1 &text{if $x< 0$.}
end{cases}$$
$endgroup$
add a comment |
$begingroup$
Something is wrong. The pointwise limit should be
$$lim_{nto infty}frac{e^{frac{-x^2}{n}}}{1+e^{nx}}=
begin{cases}
0& text{if $x>0$,}\
1/2 &text{if $x=0$,}\
1 &text{if $x< 0$.}
end{cases}$$
$endgroup$
Something is wrong. The pointwise limit should be
$$lim_{nto infty}frac{e^{frac{-x^2}{n}}}{1+e^{nx}}=
begin{cases}
0& text{if $x>0$,}\
1/2 &text{if $x=0$,}\
1 &text{if $x< 0$.}
end{cases}$$
edited Jan 27 at 9:19
answered Jan 27 at 8:47


Robert ZRobert Z
101k1070143
101k1070143
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089275%2fis-my-use-of-fatous-lemma-correct-in-this-case%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown