Levy upward in $L^2$
$begingroup$
Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.
Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.
Let $X_n=mathbb{E}[Z|F_n]$.
Given:
If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.
For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$
How do we show that $||X_n-Z||_2to0$?
I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.
Is this correct? How do I continue from here?
convergence lp-spaces martingales
$endgroup$
|
show 2 more comments
$begingroup$
Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.
Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.
Let $X_n=mathbb{E}[Z|F_n]$.
Given:
If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.
For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$
How do we show that $||X_n-Z||_2to0$?
I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.
Is this correct? How do I continue from here?
convergence lp-spaces martingales
$endgroup$
1
$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36
$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40
1
$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46
$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26
1
$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50
|
show 2 more comments
$begingroup$
Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.
Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.
Let $X_n=mathbb{E}[Z|F_n]$.
Given:
If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.
For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$
How do we show that $||X_n-Z||_2to0$?
I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.
Is this correct? How do I continue from here?
convergence lp-spaces martingales
$endgroup$
Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.
Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.
Let $X_n=mathbb{E}[Z|F_n]$.
Given:
If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.
For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$
How do we show that $||X_n-Z||_2to0$?
I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.
Is this correct? How do I continue from here?
convergence lp-spaces martingales
convergence lp-spaces martingales
asked Jan 28 at 20:59
Joachim DoyleJoachim Doyle
818
818
1
$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36
$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40
1
$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46
$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26
1
$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50
|
show 2 more comments
1
$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36
$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40
1
$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46
$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26
1
$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50
1
1
$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36
$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36
$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40
$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40
1
1
$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46
$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46
$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26
$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26
1
1
$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50
$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50
|
show 2 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091375%2flevy-upward-in-l2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091375%2flevy-upward-in-l2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36
$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40
1
$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46
$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26
1
$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50