Levy upward in $L^2$












1












$begingroup$


Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.

Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.

Let $X_n=mathbb{E}[Z|F_n]$.



Given:

If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.

For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$




How do we show that $||X_n-Z||_2to0$?




I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.

Is this correct? How do I continue from here?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
    $endgroup$
    – saz
    Jan 29 at 8:36










  • $begingroup$
    @saz Then it converges in $L^2$?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 8:40






  • 1




    $begingroup$
    Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
    $endgroup$
    – saz
    Jan 29 at 8:46












  • $begingroup$
    @saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 9:26






  • 1




    $begingroup$
    Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
    $endgroup$
    – saz
    Jan 29 at 9:50
















1












$begingroup$


Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.

Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.

Let $X_n=mathbb{E}[Z|F_n]$.



Given:

If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.

For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$




How do we show that $||X_n-Z||_2to0$?




I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.

Is this correct? How do I continue from here?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
    $endgroup$
    – saz
    Jan 29 at 8:36










  • $begingroup$
    @saz Then it converges in $L^2$?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 8:40






  • 1




    $begingroup$
    Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
    $endgroup$
    – saz
    Jan 29 at 8:46












  • $begingroup$
    @saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 9:26






  • 1




    $begingroup$
    Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
    $endgroup$
    – saz
    Jan 29 at 9:50














1












1








1


1



$begingroup$


Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.

Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.

Let $X_n=mathbb{E}[Z|F_n]$.



Given:

If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.

For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$




How do we show that $||X_n-Z||_2to0$?




I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.

Is this correct? How do I continue from here?










share|cite|improve this question









$endgroup$




Let $(F_n)_n$ be a filtration and $F=sigma(cup_n F_n)$.

Let $Z$ be a random variable such that $mathbb{E}Z^2<infty$.

Let $X_n=mathbb{E}[Z|F_n]$.



Given:

If $X_nto Z$ a.s. then $||X_n-Z||_2to0$ iff $||X_n||_2to ||Z||_2$.

For a $pi$-system $Pi$ such that $sigma(Pi)subset F$, if we have $int_A Ydmathbb{P}=int_A Xdmathbb{P}$ for all $Ain Pi$ then
$$Y=mathbb{E}[X|sigma(Pi)].$$




How do we show that $||X_n-Z||_2to0$?




I know that
$$||X_n||_2=left(mathbb{E}X_n^2right)^{1/2}=left(mathbb{E}[mathbb{E}[Z|F_n]^2]right)^{1/2}.$$
By conditional Jensen I thought that then $||X_n||_2leqleft(mathbb{E}[mathbb{E}[Z^2|F_n]]right)^{1/2}=left(mathbb{E}[Z^2]right)^{1/2}=||Z||_2$.

Is this correct? How do I continue from here?







convergence lp-spaces martingales






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 28 at 20:59









Joachim DoyleJoachim Doyle

818




818








  • 1




    $begingroup$
    What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
    $endgroup$
    – saz
    Jan 29 at 8:36










  • $begingroup$
    @saz Then it converges in $L^2$?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 8:40






  • 1




    $begingroup$
    Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
    $endgroup$
    – saz
    Jan 29 at 8:46












  • $begingroup$
    @saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 9:26






  • 1




    $begingroup$
    Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
    $endgroup$
    – saz
    Jan 29 at 9:50














  • 1




    $begingroup$
    What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
    $endgroup$
    – saz
    Jan 29 at 8:36










  • $begingroup$
    @saz Then it converges in $L^2$?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 8:40






  • 1




    $begingroup$
    Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
    $endgroup$
    – saz
    Jan 29 at 8:46












  • $begingroup$
    @saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
    $endgroup$
    – Joachim Doyle
    Jan 29 at 9:26






  • 1




    $begingroup$
    Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
    $endgroup$
    – saz
    Jan 29 at 9:50








1




1




$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36




$begingroup$
What do you know about limit theorems for martingales? Note that $(X_n)_n$ is an $L^2$-bounded martingale, hence .....
$endgroup$
– saz
Jan 29 at 8:36












$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40




$begingroup$
@saz Then it converges in $L^2$?
$endgroup$
– Joachim Doyle
Jan 29 at 8:40




1




1




$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46






$begingroup$
Yes, it does.. so all what remains to do is to identity the limit, let's call it $X_{infty}$. To this end you have to use that $$ int_F Z , dmathbb{P} = int_F X_n , dmathbb{P}$$ for any $F in F_n$, $n in mathbb{N}$. You can let $n to infty$ on the right-hand side (why?) to obtain $$int_F Z , dmathbb{P} = int_F X_{infty} , dmathbb{P}$$ for all $F in F_n$, $n in mathbb{N}$. Conclude that $X_{infty}=Z$ a.s.
$endgroup$
– saz
Jan 29 at 8:46














$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26




$begingroup$
@saz Why can we let $ntoinfty$ in $int_F X_n dmathbb{P}$? Is it because of monotone convergence and the martingale property?
$endgroup$
– Joachim Doyle
Jan 29 at 9:26




1




1




$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50




$begingroup$
Note that $$int_F (X_n-X_{infty})^2 , dmathbb{P} leq int (X_n-X_{infty})^2 , dmathbb{P}.$$ Now use the fact that $Y_n to Y$ in $L^2$ implies $int Y_n , dmathbb{P} to int Y , dmathbb{P}$.
$endgroup$
– saz
Jan 29 at 9:50










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091375%2flevy-upward-in-l2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091375%2flevy-upward-in-l2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith