If $Lf=bf'+frac12σ^2f''$, $L^ast$ is the $L^2$-adjoint of $L$, $ϱ$ is a solution of $L^astϱ=0$ and...
$begingroup$
Let $bin C^1(mathbb R)$, $sigmain C^2(mathbb R)$, $$Lf:=bf'+frac12sigma^2f'';;;text{for }fin C^2(mathbb R)$$ and $$L^ast g:=frac12(sigma^2g)''-(bg)';;;text{for }gin C^2(mathbb R).$$ Moreover, let $varrhoin C^2(mathbb R)$ with $$intvarrho(x):{rm d}x=1tag1$$ and $$L^astvarrho=0tag2$$ Now, let $mu$ denote the measure with density $varrho$ with respect to the Lebesgue measure $lambda$.
Are we able to show that $$int f(Lg):{rm d}mu=int g(Lf):{rm d}mutag3$$ for all $f,gin C_c^2(mathbb R)$?
Clearly, $$int(Lf)g:{rm d}lambda=int f(L^ast g):{rm d}mutag4$$ for all $f,gin C^2(mathbb R)$ such that $f$ or $g$ is compactly supported. So, if $fin C^2(mathbb R)$ and $gin C_c^2(mathbb R)$, then $varrho gin C_c^2(mathbb R)$ and $$int(Lf)g:{rm d}mu=int fL^ast(varrho g):{rm d}lambdatag5.$$ Now, $$L^ast(varrho g)=underbrace{(L^astvarrho)}_{=:0}g+(sigma^2varrho)'g'+varrhounderbrace{left(frac12sigma^2g''-bg'right)}_{=:L^ast g:+:b'g}tag6.$$ However, I don't know how we need to proceed from here.
real-analysis integration functional-analysis operator-theory
$endgroup$
add a comment |
$begingroup$
Let $bin C^1(mathbb R)$, $sigmain C^2(mathbb R)$, $$Lf:=bf'+frac12sigma^2f'';;;text{for }fin C^2(mathbb R)$$ and $$L^ast g:=frac12(sigma^2g)''-(bg)';;;text{for }gin C^2(mathbb R).$$ Moreover, let $varrhoin C^2(mathbb R)$ with $$intvarrho(x):{rm d}x=1tag1$$ and $$L^astvarrho=0tag2$$ Now, let $mu$ denote the measure with density $varrho$ with respect to the Lebesgue measure $lambda$.
Are we able to show that $$int f(Lg):{rm d}mu=int g(Lf):{rm d}mutag3$$ for all $f,gin C_c^2(mathbb R)$?
Clearly, $$int(Lf)g:{rm d}lambda=int f(L^ast g):{rm d}mutag4$$ for all $f,gin C^2(mathbb R)$ such that $f$ or $g$ is compactly supported. So, if $fin C^2(mathbb R)$ and $gin C_c^2(mathbb R)$, then $varrho gin C_c^2(mathbb R)$ and $$int(Lf)g:{rm d}mu=int fL^ast(varrho g):{rm d}lambdatag5.$$ Now, $$L^ast(varrho g)=underbrace{(L^astvarrho)}_{=:0}g+(sigma^2varrho)'g'+varrhounderbrace{left(frac12sigma^2g''-bg'right)}_{=:L^ast g:+:b'g}tag6.$$ However, I don't know how we need to proceed from here.
real-analysis integration functional-analysis operator-theory
$endgroup$
$begingroup$
Do you want to have $rho$ instead of $g$ in (2) (and in the line afterwards)?
$endgroup$
– gerw
Jan 29 at 12:54
$begingroup$
@gerw Yes, of course.
$endgroup$
– 0xbadf00d
Jan 29 at 12:55
$begingroup$
Why do you think that (3) should hold?
$endgroup$
– gerw
Jan 29 at 13:22
$begingroup$
@gerw Meanwhile, I think it doesn't hold, but $L$ can be decomposed into a symmetric and an anti-symmetric part.
$endgroup$
– 0xbadf00d
Jan 29 at 13:45
add a comment |
$begingroup$
Let $bin C^1(mathbb R)$, $sigmain C^2(mathbb R)$, $$Lf:=bf'+frac12sigma^2f'';;;text{for }fin C^2(mathbb R)$$ and $$L^ast g:=frac12(sigma^2g)''-(bg)';;;text{for }gin C^2(mathbb R).$$ Moreover, let $varrhoin C^2(mathbb R)$ with $$intvarrho(x):{rm d}x=1tag1$$ and $$L^astvarrho=0tag2$$ Now, let $mu$ denote the measure with density $varrho$ with respect to the Lebesgue measure $lambda$.
Are we able to show that $$int f(Lg):{rm d}mu=int g(Lf):{rm d}mutag3$$ for all $f,gin C_c^2(mathbb R)$?
Clearly, $$int(Lf)g:{rm d}lambda=int f(L^ast g):{rm d}mutag4$$ for all $f,gin C^2(mathbb R)$ such that $f$ or $g$ is compactly supported. So, if $fin C^2(mathbb R)$ and $gin C_c^2(mathbb R)$, then $varrho gin C_c^2(mathbb R)$ and $$int(Lf)g:{rm d}mu=int fL^ast(varrho g):{rm d}lambdatag5.$$ Now, $$L^ast(varrho g)=underbrace{(L^astvarrho)}_{=:0}g+(sigma^2varrho)'g'+varrhounderbrace{left(frac12sigma^2g''-bg'right)}_{=:L^ast g:+:b'g}tag6.$$ However, I don't know how we need to proceed from here.
real-analysis integration functional-analysis operator-theory
$endgroup$
Let $bin C^1(mathbb R)$, $sigmain C^2(mathbb R)$, $$Lf:=bf'+frac12sigma^2f'';;;text{for }fin C^2(mathbb R)$$ and $$L^ast g:=frac12(sigma^2g)''-(bg)';;;text{for }gin C^2(mathbb R).$$ Moreover, let $varrhoin C^2(mathbb R)$ with $$intvarrho(x):{rm d}x=1tag1$$ and $$L^astvarrho=0tag2$$ Now, let $mu$ denote the measure with density $varrho$ with respect to the Lebesgue measure $lambda$.
Are we able to show that $$int f(Lg):{rm d}mu=int g(Lf):{rm d}mutag3$$ for all $f,gin C_c^2(mathbb R)$?
Clearly, $$int(Lf)g:{rm d}lambda=int f(L^ast g):{rm d}mutag4$$ for all $f,gin C^2(mathbb R)$ such that $f$ or $g$ is compactly supported. So, if $fin C^2(mathbb R)$ and $gin C_c^2(mathbb R)$, then $varrho gin C_c^2(mathbb R)$ and $$int(Lf)g:{rm d}mu=int fL^ast(varrho g):{rm d}lambdatag5.$$ Now, $$L^ast(varrho g)=underbrace{(L^astvarrho)}_{=:0}g+(sigma^2varrho)'g'+varrhounderbrace{left(frac12sigma^2g''-bg'right)}_{=:L^ast g:+:b'g}tag6.$$ However, I don't know how we need to proceed from here.
real-analysis integration functional-analysis operator-theory
real-analysis integration functional-analysis operator-theory
edited Jan 29 at 12:55
0xbadf00d
asked Jan 28 at 21:43
0xbadf00d0xbadf00d
1,79441533
1,79441533
$begingroup$
Do you want to have $rho$ instead of $g$ in (2) (and in the line afterwards)?
$endgroup$
– gerw
Jan 29 at 12:54
$begingroup$
@gerw Yes, of course.
$endgroup$
– 0xbadf00d
Jan 29 at 12:55
$begingroup$
Why do you think that (3) should hold?
$endgroup$
– gerw
Jan 29 at 13:22
$begingroup$
@gerw Meanwhile, I think it doesn't hold, but $L$ can be decomposed into a symmetric and an anti-symmetric part.
$endgroup$
– 0xbadf00d
Jan 29 at 13:45
add a comment |
$begingroup$
Do you want to have $rho$ instead of $g$ in (2) (and in the line afterwards)?
$endgroup$
– gerw
Jan 29 at 12:54
$begingroup$
@gerw Yes, of course.
$endgroup$
– 0xbadf00d
Jan 29 at 12:55
$begingroup$
Why do you think that (3) should hold?
$endgroup$
– gerw
Jan 29 at 13:22
$begingroup$
@gerw Meanwhile, I think it doesn't hold, but $L$ can be decomposed into a symmetric and an anti-symmetric part.
$endgroup$
– 0xbadf00d
Jan 29 at 13:45
$begingroup$
Do you want to have $rho$ instead of $g$ in (2) (and in the line afterwards)?
$endgroup$
– gerw
Jan 29 at 12:54
$begingroup$
Do you want to have $rho$ instead of $g$ in (2) (and in the line afterwards)?
$endgroup$
– gerw
Jan 29 at 12:54
$begingroup$
@gerw Yes, of course.
$endgroup$
– 0xbadf00d
Jan 29 at 12:55
$begingroup$
@gerw Yes, of course.
$endgroup$
– 0xbadf00d
Jan 29 at 12:55
$begingroup$
Why do you think that (3) should hold?
$endgroup$
– gerw
Jan 29 at 13:22
$begingroup$
Why do you think that (3) should hold?
$endgroup$
– gerw
Jan 29 at 13:22
$begingroup$
@gerw Meanwhile, I think it doesn't hold, but $L$ can be decomposed into a symmetric and an anti-symmetric part.
$endgroup$
– 0xbadf00d
Jan 29 at 13:45
$begingroup$
@gerw Meanwhile, I think it doesn't hold, but $L$ can be decomposed into a symmetric and an anti-symmetric part.
$endgroup$
– 0xbadf00d
Jan 29 at 13:45
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091435%2fif-lf-bf-frac12%25cf%25832f-l-ast-is-the-l2-adjoint-of-l-%25cf%25b1-is-a-soluti%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091435%2fif-lf-bf-frac12%25cf%25832f-l-ast-is-the-l2-adjoint-of-l-%25cf%25b1-is-a-soluti%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you want to have $rho$ instead of $g$ in (2) (and in the line afterwards)?
$endgroup$
– gerw
Jan 29 at 12:54
$begingroup$
@gerw Yes, of course.
$endgroup$
– 0xbadf00d
Jan 29 at 12:55
$begingroup$
Why do you think that (3) should hold?
$endgroup$
– gerw
Jan 29 at 13:22
$begingroup$
@gerw Meanwhile, I think it doesn't hold, but $L$ can be decomposed into a symmetric and an anti-symmetric part.
$endgroup$
– 0xbadf00d
Jan 29 at 13:45