$A^n$ formula not working. Checked arithmetic
up vote
0
down vote
favorite
I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$
My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$
I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$
And P inverse is:
$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$
The final formula i got from multiplying
$PD^n P^-1$
is
$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$
It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?
matrices eigenvalues-eigenvectors diagonalization
add a comment |
up vote
0
down vote
favorite
I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$
My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$
I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$
And P inverse is:
$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$
The final formula i got from multiplying
$PD^n P^-1$
is
$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$
It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?
matrices eigenvalues-eigenvectors diagonalization
bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago
@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago
$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$
My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$
I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$
And P inverse is:
$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$
The final formula i got from multiplying
$PD^n P^-1$
is
$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$
It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?
matrices eigenvalues-eigenvectors diagonalization
I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$
My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$
I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$
And P inverse is:
$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$
The final formula i got from multiplying
$PD^n P^-1$
is
$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$
It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?
matrices eigenvalues-eigenvectors diagonalization
matrices eigenvalues-eigenvectors diagonalization
edited 2 days ago
Bernard
115k637108
115k637108
asked 2 days ago


Dani Jo
41
41
bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago
@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago
$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago
add a comment |
bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago
@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago
$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago
bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago
bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago
@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago
@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago
$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago
$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
Your calculations for $PD^nP^{-1}$ are wrong. Check them.
Remember that, for instance, $2cdot 3^n neq 6^n$.
add a comment |
up vote
0
down vote
You can simplify the computation by choosing the matrix
$$
P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
$$
so that
$$
P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
$$
Therefore, with more accurate computations,
begin{align}
Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
&=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
\[6px]
&=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
\[6px]
&=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
end{align}
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Your calculations for $PD^nP^{-1}$ are wrong. Check them.
Remember that, for instance, $2cdot 3^n neq 6^n$.
add a comment |
up vote
1
down vote
Your calculations for $PD^nP^{-1}$ are wrong. Check them.
Remember that, for instance, $2cdot 3^n neq 6^n$.
add a comment |
up vote
1
down vote
up vote
1
down vote
Your calculations for $PD^nP^{-1}$ are wrong. Check them.
Remember that, for instance, $2cdot 3^n neq 6^n$.
Your calculations for $PD^nP^{-1}$ are wrong. Check them.
Remember that, for instance, $2cdot 3^n neq 6^n$.
answered 2 days ago


Alejandro Nasif Salum
3,629117
3,629117
add a comment |
add a comment |
up vote
0
down vote
You can simplify the computation by choosing the matrix
$$
P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
$$
so that
$$
P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
$$
Therefore, with more accurate computations,
begin{align}
Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
&=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
\[6px]
&=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
\[6px]
&=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
end{align}
add a comment |
up vote
0
down vote
You can simplify the computation by choosing the matrix
$$
P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
$$
so that
$$
P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
$$
Therefore, with more accurate computations,
begin{align}
Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
&=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
\[6px]
&=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
\[6px]
&=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
end{align}
add a comment |
up vote
0
down vote
up vote
0
down vote
You can simplify the computation by choosing the matrix
$$
P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
$$
so that
$$
P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
$$
Therefore, with more accurate computations,
begin{align}
Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
&=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
\[6px]
&=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
\[6px]
&=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
end{align}
You can simplify the computation by choosing the matrix
$$
P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
$$
so that
$$
P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
$$
Therefore, with more accurate computations,
begin{align}
Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
&=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
\[6px]
&=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
\[6px]
&=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
end{align}
answered 2 days ago


egreg
173k1383198
173k1383198
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005593%2fan-formula-not-working-checked-arithmetic%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago
@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago
$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago