$A^n$ formula not working. Checked arithmetic











up vote
0
down vote

favorite












I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$

My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$



I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$



And P inverse is:



$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$

The final formula i got from multiplying
$PD^n P^-1$



is



$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$



It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?










share|cite|improve this question
























  • bmatrix gives square brackets, pmatrix gives parentheses
    – amWhy
    2 days ago












  • @DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
    – Moo
    2 days ago












  • $P, P^{-1},D$ are all fine. The problem is in the last bit.
    – Henno Brandsma
    2 days ago















up vote
0
down vote

favorite












I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$

My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$



I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$



And P inverse is:



$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$

The final formula i got from multiplying
$PD^n P^-1$



is



$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$



It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?










share|cite|improve this question
























  • bmatrix gives square brackets, pmatrix gives parentheses
    – amWhy
    2 days ago












  • @DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
    – Moo
    2 days ago












  • $P, P^{-1},D$ are all fine. The problem is in the last bit.
    – Henno Brandsma
    2 days ago













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$

My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$



I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$



And P inverse is:



$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$

The final formula i got from multiplying
$PD^n P^-1$



is



$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$



It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?










share|cite|improve this question















I'm trying to find the general formula for a Matrix raised to a certain power using diagonalization.
My original Matrix A is:
$$
begin{bmatrix}
-3 & 2 \
-12 & 7 \
end{bmatrix}
$$

My eigenvector Matrix,P, is:
$$
begin{bmatrix}
cfrac{1}{2} & cfrac{1}{3} \
1 & 1 \
end{bmatrix}
$$



I found the diagonal Matrix, D to be:
$$
begin{bmatrix}
1 & 0 \
0 & 3 \
end{bmatrix}
$$



And P inverse is:



$$
begin{bmatrix}
6 & -2 \
-6 & 3 \
end{bmatrix}
$$

The final formula i got from multiplying
$PD^n P^-1$



is



$$
begin{bmatrix}
3-6^n & -1+3^n \
6- 18^n & -2 + 9^n \
end{bmatrix}
$$



It checks out in the case of $A^1$ but not $A^0$. Where did I go wrong?







matrices eigenvalues-eigenvectors diagonalization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Bernard

115k637108




115k637108










asked 2 days ago









Dani Jo

41




41












  • bmatrix gives square brackets, pmatrix gives parentheses
    – amWhy
    2 days ago












  • @DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
    – Moo
    2 days ago












  • $P, P^{-1},D$ are all fine. The problem is in the last bit.
    – Henno Brandsma
    2 days ago


















  • bmatrix gives square brackets, pmatrix gives parentheses
    – amWhy
    2 days ago












  • @DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
    – Moo
    2 days ago












  • $P, P^{-1},D$ are all fine. The problem is in the last bit.
    – Henno Brandsma
    2 days ago
















bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago






bmatrix gives square brackets, pmatrix gives parentheses
– amWhy
2 days ago














@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago






@DaniJo: Your eigenvalues / eigenvectors are correct. However, check your multiplication, for example $-2 times 3^n ne -6^n$.
– Moo
2 days ago














$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago




$P, P^{-1},D$ are all fine. The problem is in the last bit.
– Henno Brandsma
2 days ago










2 Answers
2






active

oldest

votes

















up vote
1
down vote













Your calculations for $PD^nP^{-1}$ are wrong. Check them.



Remember that, for instance, $2cdot 3^n neq 6^n$.






share|cite|improve this answer




























    up vote
    0
    down vote













    You can simplify the computation by choosing the matrix
    $$
    P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
    $$

    so that
    $$
    P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
    $$

    Therefore, with more accurate computations,
    begin{align}
    Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
    &=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
    begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
    \[6px]
    &=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
    begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
    \[6px]
    &=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
    end{align}






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005593%2fan-formula-not-working-checked-arithmetic%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      1
      down vote













      Your calculations for $PD^nP^{-1}$ are wrong. Check them.



      Remember that, for instance, $2cdot 3^n neq 6^n$.






      share|cite|improve this answer

























        up vote
        1
        down vote













        Your calculations for $PD^nP^{-1}$ are wrong. Check them.



        Remember that, for instance, $2cdot 3^n neq 6^n$.






        share|cite|improve this answer























          up vote
          1
          down vote










          up vote
          1
          down vote









          Your calculations for $PD^nP^{-1}$ are wrong. Check them.



          Remember that, for instance, $2cdot 3^n neq 6^n$.






          share|cite|improve this answer












          Your calculations for $PD^nP^{-1}$ are wrong. Check them.



          Remember that, for instance, $2cdot 3^n neq 6^n$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          Alejandro Nasif Salum

          3,629117




          3,629117






















              up vote
              0
              down vote













              You can simplify the computation by choosing the matrix
              $$
              P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
              $$

              so that
              $$
              P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
              $$

              Therefore, with more accurate computations,
              begin{align}
              Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
              &=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
              begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
              \[6px]
              &=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
              begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
              \[6px]
              &=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
              end{align}






              share|cite|improve this answer

























                up vote
                0
                down vote













                You can simplify the computation by choosing the matrix
                $$
                P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
                $$

                so that
                $$
                P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
                $$

                Therefore, with more accurate computations,
                begin{align}
                Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
                &=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
                begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
                \[6px]
                &=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
                begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
                \[6px]
                &=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
                end{align}






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  You can simplify the computation by choosing the matrix
                  $$
                  P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
                  $$

                  so that
                  $$
                  P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
                  $$

                  Therefore, with more accurate computations,
                  begin{align}
                  Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
                  &=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
                  begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
                  \[6px]
                  &=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
                  begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
                  \[6px]
                  &=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
                  end{align}






                  share|cite|improve this answer












                  You can simplify the computation by choosing the matrix
                  $$
                  P=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
                  $$

                  so that
                  $$
                  P^{-1}=begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
                  $$

                  Therefore, with more accurate computations,
                  begin{align}
                  Pbegin{bmatrix} 1^n & 0 \ 0 & 3^n end{bmatrix}P^{-1}
                  &=Pbegin{bmatrix} 1 & 0 \ 0 & 3^n end{bmatrix}
                  begin{bmatrix} 3 & -1 \ -2 & 1 end{bmatrix}
                  \[6px]
                  &=begin{bmatrix} 1 & 1 \ 2 & 3 end{bmatrix}
                  begin{bmatrix} 3 &-1 \ -2cdot3^n & 3^n end{bmatrix}
                  \[6px]
                  &=begin{bmatrix} 3-2cdot3^n & 3^n-1 \ 6(1-3^{n}) & 3^{n+1}-2 end{bmatrix}
                  end{align}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 days ago









                  egreg

                  173k1383198




                  173k1383198






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005593%2fan-formula-not-working-checked-arithmetic%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      Npm cannot find a required file even through it is in the searched directory