Poisson equation on semi-infinite strip
up vote
2
down vote
favorite
Function $u(x,y)$ satisfy the equation:
$$Delta u = e^{-2y}sin x$$
in the semi-infinite strip:
$$0<x<pi, y>0$$
and the boundary condition:
$$u(0,y) = u(pi,y),text{ }u(x,0)=sin(3x),text{ } lim_{ytoinfty} u =0$$
Find $u_y(x,0)$
I've seen someone using Fourier tranform to solve similar poisson equation in the infinite strip, and separation of variables to solve Laplace in semi-infinite strip. So I'm wondering how to solve this one? (How do we usually decide when to use separation of variables and Fourier) Or the questions only asks for $u_y(x,0)$, so is it possible to find $u_y$ without solving the equation?
pde poissons-equation
add a comment |
up vote
2
down vote
favorite
Function $u(x,y)$ satisfy the equation:
$$Delta u = e^{-2y}sin x$$
in the semi-infinite strip:
$$0<x<pi, y>0$$
and the boundary condition:
$$u(0,y) = u(pi,y),text{ }u(x,0)=sin(3x),text{ } lim_{ytoinfty} u =0$$
Find $u_y(x,0)$
I've seen someone using Fourier tranform to solve similar poisson equation in the infinite strip, and separation of variables to solve Laplace in semi-infinite strip. So I'm wondering how to solve this one? (How do we usually decide when to use separation of variables and Fourier) Or the questions only asks for $u_y(x,0)$, so is it possible to find $u_y$ without solving the equation?
pde poissons-equation
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Function $u(x,y)$ satisfy the equation:
$$Delta u = e^{-2y}sin x$$
in the semi-infinite strip:
$$0<x<pi, y>0$$
and the boundary condition:
$$u(0,y) = u(pi,y),text{ }u(x,0)=sin(3x),text{ } lim_{ytoinfty} u =0$$
Find $u_y(x,0)$
I've seen someone using Fourier tranform to solve similar poisson equation in the infinite strip, and separation of variables to solve Laplace in semi-infinite strip. So I'm wondering how to solve this one? (How do we usually decide when to use separation of variables and Fourier) Or the questions only asks for $u_y(x,0)$, so is it possible to find $u_y$ without solving the equation?
pde poissons-equation
Function $u(x,y)$ satisfy the equation:
$$Delta u = e^{-2y}sin x$$
in the semi-infinite strip:
$$0<x<pi, y>0$$
and the boundary condition:
$$u(0,y) = u(pi,y),text{ }u(x,0)=sin(3x),text{ } lim_{ytoinfty} u =0$$
Find $u_y(x,0)$
I've seen someone using Fourier tranform to solve similar poisson equation in the infinite strip, and separation of variables to solve Laplace in semi-infinite strip. So I'm wondering how to solve this one? (How do we usually decide when to use separation of variables and Fourier) Or the questions only asks for $u_y(x,0)$, so is it possible to find $u_y$ without solving the equation?
pde poissons-equation
pde poissons-equation
asked 2 days ago
QD666
1186
1186
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Let $v=u-frac{1}{3}e^{-2y}sin(x)$, where $u$ is a solution of the stated problem. Then $v$ is a solution of
$$
Delta v = Delta u - e^{-2y}sin(x)= 0,
$$
with conditions
$$
v(0,y)=v(pi,y) \
v(x,0)=u(x,0)-frac{1}{3}sin(x)=sin(3x)-frac{1}{3}sin(x)
$$
The solutions $v$ is
$$
v(x,y)=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}
$$
So,
begin{align}
u(x,y)&=v(x,y)+frac{1}{3}e^{-2y}sin(x) \ &=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}+frac{1}{3}sin(x)e^{-2y}.
end{align}
And,
$$
u_y(x,0)=-3sin(3x)+frac{1}{3}sin(x)-frac{2}{3}sin(x) \
=-3sin(3x)-frac{1}{3}sin(x).
$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Let $v=u-frac{1}{3}e^{-2y}sin(x)$, where $u$ is a solution of the stated problem. Then $v$ is a solution of
$$
Delta v = Delta u - e^{-2y}sin(x)= 0,
$$
with conditions
$$
v(0,y)=v(pi,y) \
v(x,0)=u(x,0)-frac{1}{3}sin(x)=sin(3x)-frac{1}{3}sin(x)
$$
The solutions $v$ is
$$
v(x,y)=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}
$$
So,
begin{align}
u(x,y)&=v(x,y)+frac{1}{3}e^{-2y}sin(x) \ &=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}+frac{1}{3}sin(x)e^{-2y}.
end{align}
And,
$$
u_y(x,0)=-3sin(3x)+frac{1}{3}sin(x)-frac{2}{3}sin(x) \
=-3sin(3x)-frac{1}{3}sin(x).
$$
add a comment |
up vote
1
down vote
accepted
Let $v=u-frac{1}{3}e^{-2y}sin(x)$, where $u$ is a solution of the stated problem. Then $v$ is a solution of
$$
Delta v = Delta u - e^{-2y}sin(x)= 0,
$$
with conditions
$$
v(0,y)=v(pi,y) \
v(x,0)=u(x,0)-frac{1}{3}sin(x)=sin(3x)-frac{1}{3}sin(x)
$$
The solutions $v$ is
$$
v(x,y)=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}
$$
So,
begin{align}
u(x,y)&=v(x,y)+frac{1}{3}e^{-2y}sin(x) \ &=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}+frac{1}{3}sin(x)e^{-2y}.
end{align}
And,
$$
u_y(x,0)=-3sin(3x)+frac{1}{3}sin(x)-frac{2}{3}sin(x) \
=-3sin(3x)-frac{1}{3}sin(x).
$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Let $v=u-frac{1}{3}e^{-2y}sin(x)$, where $u$ is a solution of the stated problem. Then $v$ is a solution of
$$
Delta v = Delta u - e^{-2y}sin(x)= 0,
$$
with conditions
$$
v(0,y)=v(pi,y) \
v(x,0)=u(x,0)-frac{1}{3}sin(x)=sin(3x)-frac{1}{3}sin(x)
$$
The solutions $v$ is
$$
v(x,y)=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}
$$
So,
begin{align}
u(x,y)&=v(x,y)+frac{1}{3}e^{-2y}sin(x) \ &=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}+frac{1}{3}sin(x)e^{-2y}.
end{align}
And,
$$
u_y(x,0)=-3sin(3x)+frac{1}{3}sin(x)-frac{2}{3}sin(x) \
=-3sin(3x)-frac{1}{3}sin(x).
$$
Let $v=u-frac{1}{3}e^{-2y}sin(x)$, where $u$ is a solution of the stated problem. Then $v$ is a solution of
$$
Delta v = Delta u - e^{-2y}sin(x)= 0,
$$
with conditions
$$
v(0,y)=v(pi,y) \
v(x,0)=u(x,0)-frac{1}{3}sin(x)=sin(3x)-frac{1}{3}sin(x)
$$
The solutions $v$ is
$$
v(x,y)=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}
$$
So,
begin{align}
u(x,y)&=v(x,y)+frac{1}{3}e^{-2y}sin(x) \ &=sin(3x)e^{-3y}-frac{1}{3}sin(x)e^{-y}+frac{1}{3}sin(x)e^{-2y}.
end{align}
And,
$$
u_y(x,0)=-3sin(3x)+frac{1}{3}sin(x)-frac{2}{3}sin(x) \
=-3sin(3x)-frac{1}{3}sin(x).
$$
answered 2 days ago
DisintegratingByParts
57.6k42376
57.6k42376
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005648%2fpoisson-equation-on-semi-infinite-strip%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown