How does it follow from the Pascal's Triangle that binomial coefficient are integers
up vote
0
down vote
favorite
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
add a comment |
up vote
0
down vote
favorite
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
2 days ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
So I was reading this lemma which states:
Let $m,n$ be natural numbers such that $1 leq m leq n$. Then
begin{equation*}
{nchoose m-1} + {nchoose m} = {n+1choose m}.
end{equation*}
It follows from this lemma using induction that the binomial coefficients are integers, rather than just rational numbers.
Using induction I could only prove that this equation is true for all natural numbers. How would I show that these coefficients are integers?
binomial-coefficients binomial-theorem
binomial-coefficients binomial-theorem
asked 2 days ago
Seji
153
153
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
2 days ago
add a comment |
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
2 days ago
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
2 days ago
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
add a comment |
up vote
2
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
add a comment |
up vote
2
down vote
up vote
2
down vote
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
I suppose that, in this context, $binom nm$ is defined as$$binom nm=frac{n!}{m!(n-m)!}.$$With this definition, it is clear that $binom nminmathbb Q$, but it is not clear that it is an integer.
However, it is clear that $binom n0=binom nn=1$, which is an integer. And, since$$binom n{m-1}+binom nm=binom{n+1}m,$$it follows (by induction on $n$), that each $binom nm$ is an integer.
answered 2 days ago
José Carlos Santos
140k18111204
140k18111204
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005660%2fhow-does-it-follow-from-the-pascals-triangle-that-binomial-coefficient-are-inte%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Note that $binom{n}{0}=1$ for all $ninBbb N$ as well as $binom{n}{k}=0$ for $k<0$. Applying double induction then along with Pascal's identity and the well known property that the sum of two natural numbers is again a natural number will imply the result.
– JMoravitz
2 days ago