Galois extension - minimum polynomial











up vote
-1
down vote

favorite












Let $K$ be a Galois extension of $F$ and let $ain K$. Let $n=[K:F]$, $r=[F(a):F]$, $G=text{Gal}(K/F)$ and $H=text{Gal}(K/F(a))$.



We symbolize with $tau_1, ldots , tau_r$ the left cosets of $H$ in $G$.




  1. Show that $displaystyle{min (F,a)=prod_{i=1}^rleft (x-tau_i(a)right )}$.


  2. Show that $displaystyle{prod_{sigma in G}left (x-tau_i(a)right )=min (F,a)^{n/r}}$.



$$$$



Could you give me a hint how we could show these two points? I don't really have an idea.










share|cite|improve this question


























    up vote
    -1
    down vote

    favorite












    Let $K$ be a Galois extension of $F$ and let $ain K$. Let $n=[K:F]$, $r=[F(a):F]$, $G=text{Gal}(K/F)$ and $H=text{Gal}(K/F(a))$.



    We symbolize with $tau_1, ldots , tau_r$ the left cosets of $H$ in $G$.




    1. Show that $displaystyle{min (F,a)=prod_{i=1}^rleft (x-tau_i(a)right )}$.


    2. Show that $displaystyle{prod_{sigma in G}left (x-tau_i(a)right )=min (F,a)^{n/r}}$.



    $$$$



    Could you give me a hint how we could show these two points? I don't really have an idea.










    share|cite|improve this question
























      up vote
      -1
      down vote

      favorite









      up vote
      -1
      down vote

      favorite











      Let $K$ be a Galois extension of $F$ and let $ain K$. Let $n=[K:F]$, $r=[F(a):F]$, $G=text{Gal}(K/F)$ and $H=text{Gal}(K/F(a))$.



      We symbolize with $tau_1, ldots , tau_r$ the left cosets of $H$ in $G$.




      1. Show that $displaystyle{min (F,a)=prod_{i=1}^rleft (x-tau_i(a)right )}$.


      2. Show that $displaystyle{prod_{sigma in G}left (x-tau_i(a)right )=min (F,a)^{n/r}}$.



      $$$$



      Could you give me a hint how we could show these two points? I don't really have an idea.










      share|cite|improve this question













      Let $K$ be a Galois extension of $F$ and let $ain K$. Let $n=[K:F]$, $r=[F(a):F]$, $G=text{Gal}(K/F)$ and $H=text{Gal}(K/F(a))$.



      We symbolize with $tau_1, ldots , tau_r$ the left cosets of $H$ in $G$.




      1. Show that $displaystyle{min (F,a)=prod_{i=1}^rleft (x-tau_i(a)right )}$.


      2. Show that $displaystyle{prod_{sigma in G}left (x-tau_i(a)right )=min (F,a)^{n/r}}$.



      $$$$



      Could you give me a hint how we could show these two points? I don't really have an idea.







      abstract-algebra field-theory galois-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      Mary Star

      2,88582263




      2,88582263



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005655%2fgalois-extension-minimum-polynomial%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005655%2fgalois-extension-minimum-polynomial%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          WPF add header to Image with URL pettitions [duplicate]