$mathbb{Z_9}$ is not a subring of $mathbb{Z_{12}}$ because Choose the correct option
up vote
0
down vote
favorite
$mathbb{Z_9}$ is not a subring of $mathbb{Z_{12}}$ because
Choose the correct option
$a)$ $mathbb{Z_9}$ is not a subset of $mathbb{Z_{12}}$
$b)$GCD$(9,12) = 3neq 1$
$c)$ $9$ doesnot divide $12$
I thinks option $c)$ will be correct by Lagrange Theorem
abstract-algebra
|
show 4 more comments
up vote
0
down vote
favorite
$mathbb{Z_9}$ is not a subring of $mathbb{Z_{12}}$ because
Choose the correct option
$a)$ $mathbb{Z_9}$ is not a subset of $mathbb{Z_{12}}$
$b)$GCD$(9,12) = 3neq 1$
$c)$ $9$ doesnot divide $12$
I thinks option $c)$ will be correct by Lagrange Theorem
abstract-algebra
2
Can you explain why you think that?
– fleablood
2 days ago
1
So Legrange Theorem says the order of every subgroup of a finite group divides the order of a group. And as rings are groups (under their primary operation (in this case addition)) that would apply to rings as well. And the order of $mathbb Z_{12}$ is $12$ and the order of $mathbb Z_9$ is $9$ and $9not mid 12$. Yep.... seems like you've figured it out.
– fleablood
2 days ago
1
.... and a) is obviously false as $Z_9 subset Z_{12}$ and b) is not a requirement of subrings. In fact by legrange the gcd of (non trivial) subrings must never be $1$.
– fleablood
2 days ago
1
I don't really have any more to add to i707107's hint. Need to show it is closed undo addition and multiplication, and that the identitys of C[x] are in C[x^5] and that every element has an additive inverse.
– fleablood
2 days ago
1
@fleablood (a) isn't obviously false as you have suggested. It depends on what definition of $Bbb{Z}_{12}$ and $Bbb{Z}_{9}$ is one using. If you consider $Bbb{Z}_{9}={[0]_9, [1]_9, ldots, [8]_9}$ and $Bbb{Z}_{12}={[0]_{12}, [1]_{12}, ldots, [11]_{12}}$ as quotients of $Bbb{Z}$ by the relevant congruence relation, then $Bbb{Z}_{9}$ isn't a subset of $Bbb{Z}_{12}$.
– Anurag A
2 days ago
|
show 4 more comments
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$mathbb{Z_9}$ is not a subring of $mathbb{Z_{12}}$ because
Choose the correct option
$a)$ $mathbb{Z_9}$ is not a subset of $mathbb{Z_{12}}$
$b)$GCD$(9,12) = 3neq 1$
$c)$ $9$ doesnot divide $12$
I thinks option $c)$ will be correct by Lagrange Theorem
abstract-algebra
$mathbb{Z_9}$ is not a subring of $mathbb{Z_{12}}$ because
Choose the correct option
$a)$ $mathbb{Z_9}$ is not a subset of $mathbb{Z_{12}}$
$b)$GCD$(9,12) = 3neq 1$
$c)$ $9$ doesnot divide $12$
I thinks option $c)$ will be correct by Lagrange Theorem
abstract-algebra
abstract-algebra
edited 2 days ago
asked 2 days ago
jasmine
1,304416
1,304416
2
Can you explain why you think that?
– fleablood
2 days ago
1
So Legrange Theorem says the order of every subgroup of a finite group divides the order of a group. And as rings are groups (under their primary operation (in this case addition)) that would apply to rings as well. And the order of $mathbb Z_{12}$ is $12$ and the order of $mathbb Z_9$ is $9$ and $9not mid 12$. Yep.... seems like you've figured it out.
– fleablood
2 days ago
1
.... and a) is obviously false as $Z_9 subset Z_{12}$ and b) is not a requirement of subrings. In fact by legrange the gcd of (non trivial) subrings must never be $1$.
– fleablood
2 days ago
1
I don't really have any more to add to i707107's hint. Need to show it is closed undo addition and multiplication, and that the identitys of C[x] are in C[x^5] and that every element has an additive inverse.
– fleablood
2 days ago
1
@fleablood (a) isn't obviously false as you have suggested. It depends on what definition of $Bbb{Z}_{12}$ and $Bbb{Z}_{9}$ is one using. If you consider $Bbb{Z}_{9}={[0]_9, [1]_9, ldots, [8]_9}$ and $Bbb{Z}_{12}={[0]_{12}, [1]_{12}, ldots, [11]_{12}}$ as quotients of $Bbb{Z}$ by the relevant congruence relation, then $Bbb{Z}_{9}$ isn't a subset of $Bbb{Z}_{12}$.
– Anurag A
2 days ago
|
show 4 more comments
2
Can you explain why you think that?
– fleablood
2 days ago
1
So Legrange Theorem says the order of every subgroup of a finite group divides the order of a group. And as rings are groups (under their primary operation (in this case addition)) that would apply to rings as well. And the order of $mathbb Z_{12}$ is $12$ and the order of $mathbb Z_9$ is $9$ and $9not mid 12$. Yep.... seems like you've figured it out.
– fleablood
2 days ago
1
.... and a) is obviously false as $Z_9 subset Z_{12}$ and b) is not a requirement of subrings. In fact by legrange the gcd of (non trivial) subrings must never be $1$.
– fleablood
2 days ago
1
I don't really have any more to add to i707107's hint. Need to show it is closed undo addition and multiplication, and that the identitys of C[x] are in C[x^5] and that every element has an additive inverse.
– fleablood
2 days ago
1
@fleablood (a) isn't obviously false as you have suggested. It depends on what definition of $Bbb{Z}_{12}$ and $Bbb{Z}_{9}$ is one using. If you consider $Bbb{Z}_{9}={[0]_9, [1]_9, ldots, [8]_9}$ and $Bbb{Z}_{12}={[0]_{12}, [1]_{12}, ldots, [11]_{12}}$ as quotients of $Bbb{Z}$ by the relevant congruence relation, then $Bbb{Z}_{9}$ isn't a subset of $Bbb{Z}_{12}$.
– Anurag A
2 days ago
2
2
Can you explain why you think that?
– fleablood
2 days ago
Can you explain why you think that?
– fleablood
2 days ago
1
1
So Legrange Theorem says the order of every subgroup of a finite group divides the order of a group. And as rings are groups (under their primary operation (in this case addition)) that would apply to rings as well. And the order of $mathbb Z_{12}$ is $12$ and the order of $mathbb Z_9$ is $9$ and $9not mid 12$. Yep.... seems like you've figured it out.
– fleablood
2 days ago
So Legrange Theorem says the order of every subgroup of a finite group divides the order of a group. And as rings are groups (under their primary operation (in this case addition)) that would apply to rings as well. And the order of $mathbb Z_{12}$ is $12$ and the order of $mathbb Z_9$ is $9$ and $9not mid 12$. Yep.... seems like you've figured it out.
– fleablood
2 days ago
1
1
.... and a) is obviously false as $Z_9 subset Z_{12}$ and b) is not a requirement of subrings. In fact by legrange the gcd of (non trivial) subrings must never be $1$.
– fleablood
2 days ago
.... and a) is obviously false as $Z_9 subset Z_{12}$ and b) is not a requirement of subrings. In fact by legrange the gcd of (non trivial) subrings must never be $1$.
– fleablood
2 days ago
1
1
I don't really have any more to add to i707107's hint. Need to show it is closed undo addition and multiplication, and that the identitys of C[x] are in C[x^5] and that every element has an additive inverse.
– fleablood
2 days ago
I don't really have any more to add to i707107's hint. Need to show it is closed undo addition and multiplication, and that the identitys of C[x] are in C[x^5] and that every element has an additive inverse.
– fleablood
2 days ago
1
1
@fleablood (a) isn't obviously false as you have suggested. It depends on what definition of $Bbb{Z}_{12}$ and $Bbb{Z}_{9}$ is one using. If you consider $Bbb{Z}_{9}={[0]_9, [1]_9, ldots, [8]_9}$ and $Bbb{Z}_{12}={[0]_{12}, [1]_{12}, ldots, [11]_{12}}$ as quotients of $Bbb{Z}$ by the relevant congruence relation, then $Bbb{Z}_{9}$ isn't a subset of $Bbb{Z}_{12}$.
– Anurag A
2 days ago
@fleablood (a) isn't obviously false as you have suggested. It depends on what definition of $Bbb{Z}_{12}$ and $Bbb{Z}_{9}$ is one using. If you consider $Bbb{Z}_{9}={[0]_9, [1]_9, ldots, [8]_9}$ and $Bbb{Z}_{12}={[0]_{12}, [1]_{12}, ldots, [11]_{12}}$ as quotients of $Bbb{Z}$ by the relevant congruence relation, then $Bbb{Z}_{9}$ isn't a subset of $Bbb{Z}_{12}$.
– Anurag A
2 days ago
|
show 4 more comments
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Your choice and justification are fine. In particular: in order for $Bbb Z_9$ to be a subring of $Bbb Z_{12}$, the group $(Bbb Z_9,+)$ would have to be a subgroup of $(Bbb Z_{12},+)$. However, Lagrange's theorem says that since $9$ does not divide $12$, this cannot be the case.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Your choice and justification are fine. In particular: in order for $Bbb Z_9$ to be a subring of $Bbb Z_{12}$, the group $(Bbb Z_9,+)$ would have to be a subgroup of $(Bbb Z_{12},+)$. However, Lagrange's theorem says that since $9$ does not divide $12$, this cannot be the case.
add a comment |
up vote
1
down vote
accepted
Your choice and justification are fine. In particular: in order for $Bbb Z_9$ to be a subring of $Bbb Z_{12}$, the group $(Bbb Z_9,+)$ would have to be a subgroup of $(Bbb Z_{12},+)$. However, Lagrange's theorem says that since $9$ does not divide $12$, this cannot be the case.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Your choice and justification are fine. In particular: in order for $Bbb Z_9$ to be a subring of $Bbb Z_{12}$, the group $(Bbb Z_9,+)$ would have to be a subgroup of $(Bbb Z_{12},+)$. However, Lagrange's theorem says that since $9$ does not divide $12$, this cannot be the case.
Your choice and justification are fine. In particular: in order for $Bbb Z_9$ to be a subring of $Bbb Z_{12}$, the group $(Bbb Z_9,+)$ would have to be a subgroup of $(Bbb Z_{12},+)$. However, Lagrange's theorem says that since $9$ does not divide $12$, this cannot be the case.
answered 2 days ago
Omnomnomnom
124k788176
124k788176
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005684%2fmathbbz-9-is-not-a-subring-of-mathbbz-12-because-choose-the-correct%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
Can you explain why you think that?
– fleablood
2 days ago
1
So Legrange Theorem says the order of every subgroup of a finite group divides the order of a group. And as rings are groups (under their primary operation (in this case addition)) that would apply to rings as well. And the order of $mathbb Z_{12}$ is $12$ and the order of $mathbb Z_9$ is $9$ and $9not mid 12$. Yep.... seems like you've figured it out.
– fleablood
2 days ago
1
.... and a) is obviously false as $Z_9 subset Z_{12}$ and b) is not a requirement of subrings. In fact by legrange the gcd of (non trivial) subrings must never be $1$.
– fleablood
2 days ago
1
I don't really have any more to add to i707107's hint. Need to show it is closed undo addition and multiplication, and that the identitys of C[x] are in C[x^5] and that every element has an additive inverse.
– fleablood
2 days ago
1
@fleablood (a) isn't obviously false as you have suggested. It depends on what definition of $Bbb{Z}_{12}$ and $Bbb{Z}_{9}$ is one using. If you consider $Bbb{Z}_{9}={[0]_9, [1]_9, ldots, [8]_9}$ and $Bbb{Z}_{12}={[0]_{12}, [1]_{12}, ldots, [11]_{12}}$ as quotients of $Bbb{Z}$ by the relevant congruence relation, then $Bbb{Z}_{9}$ isn't a subset of $Bbb{Z}_{12}$.
– Anurag A
2 days ago