Better way to solve integral
up vote
2
down vote
favorite
I have the following integral
$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$
My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.
Is there a more practical / clever way of doing it?
integration
add a comment |
up vote
2
down vote
favorite
I have the following integral
$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$
My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.
Is there a more practical / clever way of doing it?
integration
Where did you see this integral?
– Frpzzd
2 days ago
Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I have the following integral
$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$
My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.
Is there a more practical / clever way of doing it?
integration
I have the following integral
$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$
My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.
Is there a more practical / clever way of doing it?
integration
integration
asked 2 days ago
Gordon
364
364
Where did you see this integral?
– Frpzzd
2 days ago
Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago
add a comment |
Where did you see this integral?
– Frpzzd
2 days ago
Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago
Where did you see this integral?
– Frpzzd
2 days ago
Where did you see this integral?
– Frpzzd
2 days ago
Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago
Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago
add a comment |
3 Answers
3
active
oldest
votes
up vote
0
down vote
While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.
First, split the fraction and notice that
$$
intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
=-cot x-2x+frac{1}{2}(x-sin xcos x)
$$
This leaves the other piece:
$$
intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
=frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
$$
Thus the integral is
$$
-frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
$$
You can also note that
$$
cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
$$
which has limit $0$ for $xto0$.
add a comment |
up vote
0
down vote
$$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.
And in
$$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and
$$sin^2x=frac{1-cos2x}2.$$
add a comment |
up vote
0
down vote
$$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
$$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I=big(I_1-I_2big)bigg|_0^{pi/2}$$
$$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
$u=x/2$:
$$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
$$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
$$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
$t=sin u$:
$$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
$$I_1=-frac1{2t}$$
$$I_1=-frac1{2sin(x/2)}$$
$$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
$$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
$$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$
$$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
$$I=frac{3pi-2sqrt{2}}4$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.
First, split the fraction and notice that
$$
intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
=-cot x-2x+frac{1}{2}(x-sin xcos x)
$$
This leaves the other piece:
$$
intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
=frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
$$
Thus the integral is
$$
-frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
$$
You can also note that
$$
cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
$$
which has limit $0$ for $xto0$.
add a comment |
up vote
0
down vote
While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.
First, split the fraction and notice that
$$
intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
=-cot x-2x+frac{1}{2}(x-sin xcos x)
$$
This leaves the other piece:
$$
intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
=frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
$$
Thus the integral is
$$
-frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
$$
You can also note that
$$
cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
$$
which has limit $0$ for $xto0$.
add a comment |
up vote
0
down vote
up vote
0
down vote
While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.
First, split the fraction and notice that
$$
intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
=-cot x-2x+frac{1}{2}(x-sin xcos x)
$$
This leaves the other piece:
$$
intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
=frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
$$
Thus the integral is
$$
-frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
$$
You can also note that
$$
cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
$$
which has limit $0$ for $xto0$.
While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.
First, split the fraction and notice that
$$
intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
=-cot x-2x+frac{1}{2}(x-sin xcos x)
$$
This leaves the other piece:
$$
intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
=frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
$$
Thus the integral is
$$
-frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
$$
You can also note that
$$
cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
$$
which has limit $0$ for $xto0$.
answered 2 days ago
egreg
173k1383198
173k1383198
add a comment |
add a comment |
up vote
0
down vote
$$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.
And in
$$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and
$$sin^2x=frac{1-cos2x}2.$$
add a comment |
up vote
0
down vote
$$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.
And in
$$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and
$$sin^2x=frac{1-cos2x}2.$$
add a comment |
up vote
0
down vote
up vote
0
down vote
$$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.
And in
$$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and
$$sin^2x=frac{1-cos2x}2.$$
$$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.
And in
$$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and
$$sin^2x=frac{1-cos2x}2.$$
answered 2 days ago
Yves Daoust
121k668216
121k668216
add a comment |
add a comment |
up vote
0
down vote
$$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
$$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I=big(I_1-I_2big)bigg|_0^{pi/2}$$
$$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
$u=x/2$:
$$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
$$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
$$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
$t=sin u$:
$$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
$$I_1=-frac1{2t}$$
$$I_1=-frac1{2sin(x/2)}$$
$$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
$$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
$$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$
$$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
$$I=frac{3pi-2sqrt{2}}4$$
add a comment |
up vote
0
down vote
$$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
$$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I=big(I_1-I_2big)bigg|_0^{pi/2}$$
$$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
$u=x/2$:
$$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
$$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
$$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
$t=sin u$:
$$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
$$I_1=-frac1{2t}$$
$$I_1=-frac1{2sin(x/2)}$$
$$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
$$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
$$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$
$$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
$$I=frac{3pi-2sqrt{2}}4$$
add a comment |
up vote
0
down vote
up vote
0
down vote
$$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
$$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I=big(I_1-I_2big)bigg|_0^{pi/2}$$
$$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
$u=x/2$:
$$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
$$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
$$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
$t=sin u$:
$$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
$$I_1=-frac1{2t}$$
$$I_1=-frac1{2sin(x/2)}$$
$$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
$$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
$$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$
$$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
$$I=frac{3pi-2sqrt{2}}4$$
$$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
$$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I=big(I_1-I_2big)bigg|_0^{pi/2}$$
$$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
$u=x/2$:
$$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
$$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
$$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
$t=sin u$:
$$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
$$I_1=-frac1{2t}$$
$$I_1=-frac1{2sin(x/2)}$$
$$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
$$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
$$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
$$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$
$$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
$$I=frac{3pi-2sqrt{2}}4$$
answered 2 days ago
clathratus
1,839219
1,839219
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005631%2fbetter-way-to-solve-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Where did you see this integral?
– Frpzzd
2 days ago
Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago