Better way to solve integral











up vote
2
down vote

favorite












I have the following integral



$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$



My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.



Is there a more practical / clever way of doing it?










share|cite|improve this question






















  • Where did you see this integral?
    – Frpzzd
    2 days ago










  • Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
    – Gordon
    2 days ago















up vote
2
down vote

favorite












I have the following integral



$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$



My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.



Is there a more practical / clever way of doing it?










share|cite|improve this question






















  • Where did you see this integral?
    – Frpzzd
    2 days ago










  • Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
    – Gordon
    2 days ago













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I have the following integral



$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$



My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.



Is there a more practical / clever way of doing it?










share|cite|improve this question













I have the following integral



$$int_{0}^{pi / 2} mathrm{d} x ,, frac{cos^{3}(x/2) - cos^{4} (x)}{sin^{2} (x)}$$



My current solution is to use
$$v = tan left(frac{x}{4}right)$$
to obtain a rational function of $v$, and integrate this.



Is there a more practical / clever way of doing it?







integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 days ago









Gordon

364




364












  • Where did you see this integral?
    – Frpzzd
    2 days ago










  • Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
    – Gordon
    2 days ago


















  • Where did you see this integral?
    – Frpzzd
    2 days ago










  • Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
    – Gordon
    2 days ago
















Where did you see this integral?
– Frpzzd
2 days ago




Where did you see this integral?
– Frpzzd
2 days ago












Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago




Comes up in my work. I like the Weierstrass trick as it is a blanket method, but am looking for a better way to approach it
– Gordon
2 days ago










3 Answers
3






active

oldest

votes

















up vote
0
down vote













While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.



First, split the fraction and notice that
$$
intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
=-cot x-2x+frac{1}{2}(x-sin xcos x)
$$

This leaves the other piece:
$$
intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
=frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
$$

Thus the integral is
$$
-frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
$$

You can also note that
$$
cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
$$

which has limit $0$ for $xto0$.






share|cite|improve this answer




























    up vote
    0
    down vote













    $$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.



    And in



    $$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and



    $$sin^2x=frac{1-cos2x}2.$$






    share|cite|improve this answer




























      up vote
      0
      down vote













      $$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
      $$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
      $$I=big(I_1-I_2big)bigg|_0^{pi/2}$$





      $$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
      $u=x/2$:
      $$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
      $$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
      $$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
      $t=sin u$:
      $$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
      $$I_1=-frac1{2t}$$
      $$I_1=-frac1{2sin(x/2)}$$





      $$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
      $$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
      $$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
      $$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$





      $$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
      $$I=frac{3pi-2sqrt{2}}4$$






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005631%2fbetter-way-to-solve-integral%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        0
        down vote













        While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.



        First, split the fraction and notice that
        $$
        intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
        =-cot x-2x+frac{1}{2}(x-sin xcos x)
        $$

        This leaves the other piece:
        $$
        intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
        =frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
        $$

        Thus the integral is
        $$
        -frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
        $$

        You can also note that
        $$
        cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
        frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
        $$

        which has limit $0$ for $xto0$.






        share|cite|improve this answer

























          up vote
          0
          down vote













          While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.



          First, split the fraction and notice that
          $$
          intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
          =-cot x-2x+frac{1}{2}(x-sin xcos x)
          $$

          This leaves the other piece:
          $$
          intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
          =frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
          $$

          Thus the integral is
          $$
          -frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
          $$

          You can also note that
          $$
          cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
          frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
          $$

          which has limit $0$ for $xto0$.






          share|cite|improve this answer























            up vote
            0
            down vote










            up vote
            0
            down vote









            While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.



            First, split the fraction and notice that
            $$
            intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
            =-cot x-2x+frac{1}{2}(x-sin xcos x)
            $$

            This leaves the other piece:
            $$
            intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
            =frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
            $$

            Thus the integral is
            $$
            -frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
            $$

            You can also note that
            $$
            cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
            frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
            $$

            which has limit $0$ for $xto0$.






            share|cite|improve this answer












            While the substitution $v=tan(x/4)$ would work, I don't think it's a good method in this case, which just requires elementary antiderivatives.



            First, split the fraction and notice that
            $$
            intfrac{cos^4x}{sin^2x},dx=intleft(frac{1}{sin^2x}-2+sin^2xright),dx
            =-cot x-2x+frac{1}{2}(x-sin xcos x)
            $$

            This leaves the other piece:
            $$
            intfrac{cos^3(x/2)}{sin^2x},dx=[t=x/2]=2intfrac{cos^3t}{sin^22t},dt
            =frac{1}{2}intfrac{cos t}{sin^2t},dt=-frac{1}{2sin t}
            $$

            Thus the integral is
            $$
            -frac{1}{2sin(x/2)}+cot x+2x-frac{1}{2}(x-sin xcos x)
            $$

            You can also note that
            $$
            cot x-frac{1}{2sin(x/2)}=frac{cos x}{2sin(x/2)cos(x/2)}-frac{1}{2sin(x/2)}=
            frac{(cos(x/2)-1)(2cos(x/2)+1)}{2sin(x/2)}
            $$

            which has limit $0$ for $xto0$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 days ago









            egreg

            173k1383198




            173k1383198






















                up vote
                0
                down vote













                $$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.



                And in



                $$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and



                $$sin^2x=frac{1-cos2x}2.$$






                share|cite|improve this answer

























                  up vote
                  0
                  down vote













                  $$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.



                  And in



                  $$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and



                  $$sin^2x=frac{1-cos2x}2.$$






                  share|cite|improve this answer























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    $$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.



                    And in



                    $$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and



                    $$sin^2x=frac{1-cos2x}2.$$






                    share|cite|improve this answer












                    $$frac{cos^3dfrac x2}{sin^2x}=frac{cosdfrac x2}{2sin^2dfrac x2}$$ is immediately integrable.



                    And in



                    $$frac{cos^4x}{sin^2x}=frac1{sin^2x}-2+sin^2x,$$ the first two terms are also immediate, and



                    $$sin^2x=frac{1-cos2x}2.$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 days ago









                    Yves Daoust

                    121k668216




                    121k668216






















                        up vote
                        0
                        down vote













                        $$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
                        $$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                        $$I=big(I_1-I_2big)bigg|_0^{pi/2}$$





                        $$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
                        $u=x/2$:
                        $$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
                        $$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
                        $$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
                        $t=sin u$:
                        $$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
                        $$I_1=-frac1{2t}$$
                        $$I_1=-frac1{2sin(x/2)}$$





                        $$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                        $$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
                        $$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
                        $$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$





                        $$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
                        $$I=frac{3pi-2sqrt{2}}4$$






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote













                          $$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
                          $$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                          $$I=big(I_1-I_2big)bigg|_0^{pi/2}$$





                          $$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
                          $u=x/2$:
                          $$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
                          $$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
                          $$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
                          $t=sin u$:
                          $$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
                          $$I_1=-frac1{2t}$$
                          $$I_1=-frac1{2sin(x/2)}$$





                          $$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                          $$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
                          $$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
                          $$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$





                          $$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
                          $$I=frac{3pi-2sqrt{2}}4$$






                          share|cite|improve this answer























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            $$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
                            $$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                            $$I=big(I_1-I_2big)bigg|_0^{pi/2}$$





                            $$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
                            $u=x/2$:
                            $$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
                            $$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
                            $$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
                            $t=sin u$:
                            $$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
                            $$I_1=-frac1{2t}$$
                            $$I_1=-frac1{2sin(x/2)}$$





                            $$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                            $$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
                            $$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
                            $$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$





                            $$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
                            $$I=frac{3pi-2sqrt{2}}4$$






                            share|cite|improve this answer












                            $$I=intfrac{cos^3(frac x2)-cos^4x}{sin^2x}mathrm{d}x$$
                            $$I=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x-intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                            $$I=big(I_1-I_2big)bigg|_0^{pi/2}$$





                            $$I_1=intfrac{cos^3(frac x2)}{sin^2x}mathrm{d}x$$
                            $u=x/2$:
                            $$I_1=2intfrac{cos^3u}{sin^22u}mathrm{d}u$$
                            $$I_1=2intfrac{cos^3u}{4sin^2ucos^2u}mathrm{d}u$$
                            $$I_1=frac12intfrac{cos u}{sin^2u}mathrm{d}u$$
                            $t=sin u$:
                            $$I_1=frac12intfrac{mathrm{d}t}{t^2}$$
                            $$I_1=-frac1{2t}$$
                            $$I_1=-frac1{2sin(x/2)}$$





                            $$I_2=intfrac{cos^4x}{sin^2x}mathrm{d}x$$
                            $$I_2=intfrac{cos^2x(1-sin^2x)}{sin^2x}mathrm{d}x$$
                            $$I_2=intcot^2x mathrm{d}x-intcos^2x mathrm{d}x$$
                            $$I_2=-bigg(cot x+frac12cos x,sin x+frac32xbigg)$$





                            $$I=bigg(-frac12csc(x/2)+cot x+frac12cos xsin x+frac32xbigg)bigg|_0^{pi/2}$$
                            $$I=frac{3pi-2sqrt{2}}4$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 days ago









                            clathratus

                            1,839219




                            1,839219






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005631%2fbetter-way-to-solve-integral%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                                Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                                A Topological Invariant for $pi_3(U(n))$