Find $limlimits_{ntoinfty}{e^n - e^{frac1n + n}}$











up vote
1
down vote

favorite
1












So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite
    1












    So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.










      share|cite|improve this question













      So far I've tried: $${e^n - e^{frac1n + n}} = e^n(1- e^{frac1n}).$$ Then appling l'Hopitals rule to $$limlimits_{ntoinfty} e^n(1- e^{frac1n}) = limlimits_{ntoinfty} dfrac{(1- e^{frac1n})}{e^{-n}},$$ I have not found success. Is there another way to manipulate the expression to be able to apply l'Hopitals? I know the limit should approach -$infty$. To clarify, I can use l'Hopital.







      calculus limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      t.perez

      356




      356






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote













          HINT



          We have that



          $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



          then use standard limits.






          share|cite|improve this answer




























            up vote
            0
            down vote













            The answer is $-infty$.



            The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



            $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



            $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



            $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



            $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



            By L'Hopital's Rule, the above expression equals



            $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



            $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



            As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



            Therefore, the answer is $-infty$.






            share|cite|improve this answer








            New contributor




            Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.


















            • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
              – t.perez
              2 days ago












            • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
              – Ekesh
              2 days ago












            • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
              – t.perez
              yesterday











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005568%2ffind-lim-limits-n-to-inftyen-e-frac1n-n%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            4
            down vote













            HINT



            We have that



            $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



            then use standard limits.






            share|cite|improve this answer

























              up vote
              4
              down vote













              HINT



              We have that



              $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



              then use standard limits.






              share|cite|improve this answer























                up vote
                4
                down vote










                up vote
                4
                down vote









                HINT



                We have that



                $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



                then use standard limits.






                share|cite|improve this answer












                HINT



                We have that



                $${e^n - e^{frac1n + n}}=e^n left(1-e^{frac1n}right)=-frac{e^n}n frac{e^{frac1n}-1}{frac1n}$$



                then use standard limits.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                gimusi

                86.1k74392




                86.1k74392






















                    up vote
                    0
                    down vote













                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.






                    share|cite|improve this answer








                    New contributor




                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.


















                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      2 days ago












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      2 days ago












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      yesterday















                    up vote
                    0
                    down vote













                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.






                    share|cite|improve this answer








                    New contributor




                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.


















                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      2 days ago












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      2 days ago












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      yesterday













                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.






                    share|cite|improve this answer








                    New contributor




                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    The answer is $-infty$.



                    The trick is to factor out an $e^{n}$ term, and force L'Hopital's Rule by writing the expression as a fraction. We have



                    $$lim_{ntoinfty} e^{n} - e^{frac{1}{n} + n} = lim_{ntoinfty} e^{n}left(1 - e^{1/n}right)$$



                    $$= lim_{ntoinfty} frac{e^{n}left(1 - e^{1/n}right)left(1 + e^{1/n}right)}{(1 + e^{1/n})} $$



                    $$= lim_{ntoinfty}frac{e^{n} left(1 - e^{2/n}right)}{1 + e^{1/n}} $$



                    $$= lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}}{1 + e^{1/n}}.$$



                    By L'Hopital's Rule, the above expression equals



                    $$lim_{ntoinfty} frac{e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n^{2}}right)}{-frac{1}{n^{2}} cdot e^{1/n}} \[1em] $$



                    $$= lim_{ntoinfty} frac{-n^{2} left( e^{n} - e^{n + frac{2}{n}}left(1 - frac{2}{n}right)right)}{e^{1/n}}.$$



                    As $n rightarrow infty$, $e^{1/n}$ approaches $1$, and the numerator clearly approaches $-infty$.



                    Therefore, the answer is $-infty$.







                    share|cite|improve this answer








                    New contributor




                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|cite|improve this answer



                    share|cite|improve this answer






                    New contributor




                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered 2 days ago









                    Ekesh

                    3715




                    3715




                    New contributor




                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    Ekesh is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.












                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      2 days ago












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      2 days ago












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      yesterday


















                    • This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                      – t.perez
                      2 days ago












                    • $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                      – Ekesh
                      2 days ago












                    • My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                      – t.perez
                      yesterday
















                    This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                    – t.perez
                    2 days ago






                    This is very helpful, thank you! A question though -- why does the numerator approach $-infty$? $$limlimits_{ntoinfty} -n^2left(e^n-e^{n+frac{2}{n}}(1-frac{2}{n})right) = limlimits_{ntoinfty}-n^2(e^n)(1-e^{frac{2}{n}}) = limlimits_{ntoinfty}-n^2 (e^n)(1-1)= 0.$$ I 'm having trouble algebraically getting there
                    – t.perez
                    2 days ago














                    $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                    – Ekesh
                    2 days ago






                    $$lim_{ntoinfty} -n^{2}left(e^{n}right)left(1 - e^{2/n}right) = lim_{ntoinfty} -n^{2} left(e^{n} - e^{2/n + n}right) = ldots$$
                    – Ekesh
                    2 days ago














                    My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                    – t.perez
                    yesterday




                    My apologies, but I still don't see it. $limlimits_{ntoinfty}e^n - e^{frac{2}{n} + n}$ is similar to the limit I originally am tying to prove
                    – t.perez
                    yesterday


















                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005568%2ffind-lim-limits-n-to-inftyen-e-frac1n-n%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith