Holder continuity of the derivate of $|x|^alpha$ for $alpha>1$











up vote
1
down vote

favorite












Suppose $U=B(0,1)$ is an open ball in $mathbb R^m$ and $alpha>1$. My question is if $|x|^alphain C^{1,gamma}(U)$ for some $gammain (0,1]$. I know that $|x|^alphain C^1(U)$ and
$$
f_i(x):=frac{partial}{partial x_i}|x|^alpha=alpha|x|^{alpha-2}x_i, mbox{ if }xneq 0.
$$

If $alphageq 2$, it is easy because we obtain $|x|^alphain C^2(U)subset C^{1,1}(U)$, with $gamma=1$ in this case.



We can suppose $1<alpha<2$. If $|x|^alphain C^{1,gamma}(U)$ then using $x_n=frac{e_i}n$ and $y_n=-frac{e_i}n$ we obtain
$$
frac{|f_i(x_n)-f_i(y_n)|}{|x_n-y_n|^gamma}=frac{alpha}{2^{gamma-1}}n^{gamma-(alpha-1)}overset{nrightarrow+infty}longrightarrow+infty,
$$

if $gamma>alpha-1$. If this $gamma$ exist we must have $gammaleqalpha-1$. I guess that $|x|^alphain C^{1,alpha-1}(U)$.



I try proof that exist $C>0$ such that
$$
|f_i(x)-f_i(y)|leq C|x-y|^{alpha-1},
$$

but I only succeeded in the case $m=1$.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    Suppose $U=B(0,1)$ is an open ball in $mathbb R^m$ and $alpha>1$. My question is if $|x|^alphain C^{1,gamma}(U)$ for some $gammain (0,1]$. I know that $|x|^alphain C^1(U)$ and
    $$
    f_i(x):=frac{partial}{partial x_i}|x|^alpha=alpha|x|^{alpha-2}x_i, mbox{ if }xneq 0.
    $$

    If $alphageq 2$, it is easy because we obtain $|x|^alphain C^2(U)subset C^{1,1}(U)$, with $gamma=1$ in this case.



    We can suppose $1<alpha<2$. If $|x|^alphain C^{1,gamma}(U)$ then using $x_n=frac{e_i}n$ and $y_n=-frac{e_i}n$ we obtain
    $$
    frac{|f_i(x_n)-f_i(y_n)|}{|x_n-y_n|^gamma}=frac{alpha}{2^{gamma-1}}n^{gamma-(alpha-1)}overset{nrightarrow+infty}longrightarrow+infty,
    $$

    if $gamma>alpha-1$. If this $gamma$ exist we must have $gammaleqalpha-1$. I guess that $|x|^alphain C^{1,alpha-1}(U)$.



    I try proof that exist $C>0$ such that
    $$
    |f_i(x)-f_i(y)|leq C|x-y|^{alpha-1},
    $$

    but I only succeeded in the case $m=1$.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Suppose $U=B(0,1)$ is an open ball in $mathbb R^m$ and $alpha>1$. My question is if $|x|^alphain C^{1,gamma}(U)$ for some $gammain (0,1]$. I know that $|x|^alphain C^1(U)$ and
      $$
      f_i(x):=frac{partial}{partial x_i}|x|^alpha=alpha|x|^{alpha-2}x_i, mbox{ if }xneq 0.
      $$

      If $alphageq 2$, it is easy because we obtain $|x|^alphain C^2(U)subset C^{1,1}(U)$, with $gamma=1$ in this case.



      We can suppose $1<alpha<2$. If $|x|^alphain C^{1,gamma}(U)$ then using $x_n=frac{e_i}n$ and $y_n=-frac{e_i}n$ we obtain
      $$
      frac{|f_i(x_n)-f_i(y_n)|}{|x_n-y_n|^gamma}=frac{alpha}{2^{gamma-1}}n^{gamma-(alpha-1)}overset{nrightarrow+infty}longrightarrow+infty,
      $$

      if $gamma>alpha-1$. If this $gamma$ exist we must have $gammaleqalpha-1$. I guess that $|x|^alphain C^{1,alpha-1}(U)$.



      I try proof that exist $C>0$ such that
      $$
      |f_i(x)-f_i(y)|leq C|x-y|^{alpha-1},
      $$

      but I only succeeded in the case $m=1$.










      share|cite|improve this question













      Suppose $U=B(0,1)$ is an open ball in $mathbb R^m$ and $alpha>1$. My question is if $|x|^alphain C^{1,gamma}(U)$ for some $gammain (0,1]$. I know that $|x|^alphain C^1(U)$ and
      $$
      f_i(x):=frac{partial}{partial x_i}|x|^alpha=alpha|x|^{alpha-2}x_i, mbox{ if }xneq 0.
      $$

      If $alphageq 2$, it is easy because we obtain $|x|^alphain C^2(U)subset C^{1,1}(U)$, with $gamma=1$ in this case.



      We can suppose $1<alpha<2$. If $|x|^alphain C^{1,gamma}(U)$ then using $x_n=frac{e_i}n$ and $y_n=-frac{e_i}n$ we obtain
      $$
      frac{|f_i(x_n)-f_i(y_n)|}{|x_n-y_n|^gamma}=frac{alpha}{2^{gamma-1}}n^{gamma-(alpha-1)}overset{nrightarrow+infty}longrightarrow+infty,
      $$

      if $gamma>alpha-1$. If this $gamma$ exist we must have $gammaleqalpha-1$. I guess that $|x|^alphain C^{1,alpha-1}(U)$.



      I try proof that exist $C>0$ such that
      $$
      |f_i(x)-f_i(y)|leq C|x-y|^{alpha-1},
      $$

      but I only succeeded in the case $m=1$.







      functional-analysis analysis inequality pde






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      Raoní Cabral Ponciano

      759




      759






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          First, let me prove this for $m=1$. The question is, whether the function
          $$
          g(x):= sign(x)|x|^gamma
          $$

          is in $C^gamma([-1,1])$ for $gammain (0,1)$. Let $x,y$ be such that $0<x<y$. Then
          $$
          g(y)-g(x) = int_x^y gamma t^{gamma-1}dt
          $$

          and by Hoelder's inequality
          $$
          |g(y)-g(x)| le int_x^y gamma t^{gamma-1}dt le gamma (x-y)^gamma cdot left(int_x^y |t|^{(gamma-1)cdot frac{gamma}{1-gamma}} dtright)^{frac{1-gamma}gamma}
          = gamma (x-y)^gamma ( y^{1-gamma}-x^{1-gamma})^{frac{1-gamma}gamma}
          le gamma (x-y)^gamma .
          $$

          In case $0<x<y$, we have $|x-y| ge |x|,|y|$, which implies
          $$
          frac{g(y)-g(x)}{|y-x|^gamma} =frac{|y|^gamma+ |x|^gamma}{|y-x|^gamma} le2.
          $$

          This shows $gin C^gamma([-1,1])$.



          Let now $m>1$. Set $gamma:=alpha-1$. Then with your functions $f_i$ we have for $0<|x|le |y|$
          $$
          f_i(x)- f_i(y) = gamma( |x|^gamma ( frac{x_i}{|x|} - frac{y_i}{|y|})+ (|x|^{gamma-1} - |y|^{gamma-1}) frac{y_i}{|y|}).
          $$

          The second term can be reduced to the case $m=1$. The first term is unproblematic
          if $|x|le |x-y|$. Now suppose $|x|>|x-y|$, which implies $|y|le 2|x|$.
          Then
          $$
          left|frac{x_i}{|x|} - frac{y_i}{|y|} right|=left| frac{x_i(|y|-|x|)-|y|(x_i-y_i)}{|x|cdot |y|}right|lefrac{(|x|+|y|)|x-y|}{|x|cdot |y|}
          le 2frac{|x-y|}{|x|} le 2|x-y|^gamma |x|^{-gamma}.
          $$

          This enables to prove $f_iin C^gamma(overline{B_1(0)})$ and $fin C^alpha(overline{B_1(0)})$ .






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005530%2fholder-continuity-of-the-derivate-of-x-alpha-for-alpha1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            First, let me prove this for $m=1$. The question is, whether the function
            $$
            g(x):= sign(x)|x|^gamma
            $$

            is in $C^gamma([-1,1])$ for $gammain (0,1)$. Let $x,y$ be such that $0<x<y$. Then
            $$
            g(y)-g(x) = int_x^y gamma t^{gamma-1}dt
            $$

            and by Hoelder's inequality
            $$
            |g(y)-g(x)| le int_x^y gamma t^{gamma-1}dt le gamma (x-y)^gamma cdot left(int_x^y |t|^{(gamma-1)cdot frac{gamma}{1-gamma}} dtright)^{frac{1-gamma}gamma}
            = gamma (x-y)^gamma ( y^{1-gamma}-x^{1-gamma})^{frac{1-gamma}gamma}
            le gamma (x-y)^gamma .
            $$

            In case $0<x<y$, we have $|x-y| ge |x|,|y|$, which implies
            $$
            frac{g(y)-g(x)}{|y-x|^gamma} =frac{|y|^gamma+ |x|^gamma}{|y-x|^gamma} le2.
            $$

            This shows $gin C^gamma([-1,1])$.



            Let now $m>1$. Set $gamma:=alpha-1$. Then with your functions $f_i$ we have for $0<|x|le |y|$
            $$
            f_i(x)- f_i(y) = gamma( |x|^gamma ( frac{x_i}{|x|} - frac{y_i}{|y|})+ (|x|^{gamma-1} - |y|^{gamma-1}) frac{y_i}{|y|}).
            $$

            The second term can be reduced to the case $m=1$. The first term is unproblematic
            if $|x|le |x-y|$. Now suppose $|x|>|x-y|$, which implies $|y|le 2|x|$.
            Then
            $$
            left|frac{x_i}{|x|} - frac{y_i}{|y|} right|=left| frac{x_i(|y|-|x|)-|y|(x_i-y_i)}{|x|cdot |y|}right|lefrac{(|x|+|y|)|x-y|}{|x|cdot |y|}
            le 2frac{|x-y|}{|x|} le 2|x-y|^gamma |x|^{-gamma}.
            $$

            This enables to prove $f_iin C^gamma(overline{B_1(0)})$ and $fin C^alpha(overline{B_1(0)})$ .






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              First, let me prove this for $m=1$. The question is, whether the function
              $$
              g(x):= sign(x)|x|^gamma
              $$

              is in $C^gamma([-1,1])$ for $gammain (0,1)$. Let $x,y$ be such that $0<x<y$. Then
              $$
              g(y)-g(x) = int_x^y gamma t^{gamma-1}dt
              $$

              and by Hoelder's inequality
              $$
              |g(y)-g(x)| le int_x^y gamma t^{gamma-1}dt le gamma (x-y)^gamma cdot left(int_x^y |t|^{(gamma-1)cdot frac{gamma}{1-gamma}} dtright)^{frac{1-gamma}gamma}
              = gamma (x-y)^gamma ( y^{1-gamma}-x^{1-gamma})^{frac{1-gamma}gamma}
              le gamma (x-y)^gamma .
              $$

              In case $0<x<y$, we have $|x-y| ge |x|,|y|$, which implies
              $$
              frac{g(y)-g(x)}{|y-x|^gamma} =frac{|y|^gamma+ |x|^gamma}{|y-x|^gamma} le2.
              $$

              This shows $gin C^gamma([-1,1])$.



              Let now $m>1$. Set $gamma:=alpha-1$. Then with your functions $f_i$ we have for $0<|x|le |y|$
              $$
              f_i(x)- f_i(y) = gamma( |x|^gamma ( frac{x_i}{|x|} - frac{y_i}{|y|})+ (|x|^{gamma-1} - |y|^{gamma-1}) frac{y_i}{|y|}).
              $$

              The second term can be reduced to the case $m=1$. The first term is unproblematic
              if $|x|le |x-y|$. Now suppose $|x|>|x-y|$, which implies $|y|le 2|x|$.
              Then
              $$
              left|frac{x_i}{|x|} - frac{y_i}{|y|} right|=left| frac{x_i(|y|-|x|)-|y|(x_i-y_i)}{|x|cdot |y|}right|lefrac{(|x|+|y|)|x-y|}{|x|cdot |y|}
              le 2frac{|x-y|}{|x|} le 2|x-y|^gamma |x|^{-gamma}.
              $$

              This enables to prove $f_iin C^gamma(overline{B_1(0)})$ and $fin C^alpha(overline{B_1(0)})$ .






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                First, let me prove this for $m=1$. The question is, whether the function
                $$
                g(x):= sign(x)|x|^gamma
                $$

                is in $C^gamma([-1,1])$ for $gammain (0,1)$. Let $x,y$ be such that $0<x<y$. Then
                $$
                g(y)-g(x) = int_x^y gamma t^{gamma-1}dt
                $$

                and by Hoelder's inequality
                $$
                |g(y)-g(x)| le int_x^y gamma t^{gamma-1}dt le gamma (x-y)^gamma cdot left(int_x^y |t|^{(gamma-1)cdot frac{gamma}{1-gamma}} dtright)^{frac{1-gamma}gamma}
                = gamma (x-y)^gamma ( y^{1-gamma}-x^{1-gamma})^{frac{1-gamma}gamma}
                le gamma (x-y)^gamma .
                $$

                In case $0<x<y$, we have $|x-y| ge |x|,|y|$, which implies
                $$
                frac{g(y)-g(x)}{|y-x|^gamma} =frac{|y|^gamma+ |x|^gamma}{|y-x|^gamma} le2.
                $$

                This shows $gin C^gamma([-1,1])$.



                Let now $m>1$. Set $gamma:=alpha-1$. Then with your functions $f_i$ we have for $0<|x|le |y|$
                $$
                f_i(x)- f_i(y) = gamma( |x|^gamma ( frac{x_i}{|x|} - frac{y_i}{|y|})+ (|x|^{gamma-1} - |y|^{gamma-1}) frac{y_i}{|y|}).
                $$

                The second term can be reduced to the case $m=1$. The first term is unproblematic
                if $|x|le |x-y|$. Now suppose $|x|>|x-y|$, which implies $|y|le 2|x|$.
                Then
                $$
                left|frac{x_i}{|x|} - frac{y_i}{|y|} right|=left| frac{x_i(|y|-|x|)-|y|(x_i-y_i)}{|x|cdot |y|}right|lefrac{(|x|+|y|)|x-y|}{|x|cdot |y|}
                le 2frac{|x-y|}{|x|} le 2|x-y|^gamma |x|^{-gamma}.
                $$

                This enables to prove $f_iin C^gamma(overline{B_1(0)})$ and $fin C^alpha(overline{B_1(0)})$ .






                share|cite|improve this answer












                First, let me prove this for $m=1$. The question is, whether the function
                $$
                g(x):= sign(x)|x|^gamma
                $$

                is in $C^gamma([-1,1])$ for $gammain (0,1)$. Let $x,y$ be such that $0<x<y$. Then
                $$
                g(y)-g(x) = int_x^y gamma t^{gamma-1}dt
                $$

                and by Hoelder's inequality
                $$
                |g(y)-g(x)| le int_x^y gamma t^{gamma-1}dt le gamma (x-y)^gamma cdot left(int_x^y |t|^{(gamma-1)cdot frac{gamma}{1-gamma}} dtright)^{frac{1-gamma}gamma}
                = gamma (x-y)^gamma ( y^{1-gamma}-x^{1-gamma})^{frac{1-gamma}gamma}
                le gamma (x-y)^gamma .
                $$

                In case $0<x<y$, we have $|x-y| ge |x|,|y|$, which implies
                $$
                frac{g(y)-g(x)}{|y-x|^gamma} =frac{|y|^gamma+ |x|^gamma}{|y-x|^gamma} le2.
                $$

                This shows $gin C^gamma([-1,1])$.



                Let now $m>1$. Set $gamma:=alpha-1$. Then with your functions $f_i$ we have for $0<|x|le |y|$
                $$
                f_i(x)- f_i(y) = gamma( |x|^gamma ( frac{x_i}{|x|} - frac{y_i}{|y|})+ (|x|^{gamma-1} - |y|^{gamma-1}) frac{y_i}{|y|}).
                $$

                The second term can be reduced to the case $m=1$. The first term is unproblematic
                if $|x|le |x-y|$. Now suppose $|x|>|x-y|$, which implies $|y|le 2|x|$.
                Then
                $$
                left|frac{x_i}{|x|} - frac{y_i}{|y|} right|=left| frac{x_i(|y|-|x|)-|y|(x_i-y_i)}{|x|cdot |y|}right|lefrac{(|x|+|y|)|x-y|}{|x|cdot |y|}
                le 2frac{|x-y|}{|x|} le 2|x-y|^gamma |x|^{-gamma}.
                $$

                This enables to prove $f_iin C^gamma(overline{B_1(0)})$ and $fin C^alpha(overline{B_1(0)})$ .







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                daw

                23.8k1544




                23.8k1544






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005530%2fholder-continuity-of-the-derivate-of-x-alpha-for-alpha1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith