Maximum Value of $|sum_{k=1}^n (-1)^{lfloor ak/brfloor}|$











up vote
3
down vote

favorite
1












Let $a,binmathbb{N}$ such that $(a,b)=1$. If $2nmid a$, then one can show that
$$rho_{a/b}(n)=sum_{k=1}^n (-1)^{lfloor ak/brfloor}$$
is periodic. Is there any explicit way to give the maximum of $|rho_{a/b}(n)|$ in terms of $a$ and $b$? As a first attempt we can show that
$$rho_{a/b}(n+b)=sum_{k=1}^{n+b}(-1)^{lfloor ak/brfloor}=rho_{a/b}(b)+sum_{k=1}^n(-1)^{lfloor a(k+b)/brfloor}=rho_{a/b}(b)+(-1)^arho_{a/b}(n).$$
Since we assume that $2nmid a$ we have that $rho_{a/b}(n+2b)=rho_{a/b}(n)$ meaning the period is $le 2b$. Since the function starts at $0$ and $rho_{a/b}(2b)=0$, combined with the fact that it moves in discrete steps, gives
$$max|rho_{a/b}(n)|le b.$$
However, I've noticed that the maximum doesn't seem to depend too reliably on just $b$. If you fix $b$ you can achieve a whole spectrum of bounds by adjusting $a$. Hence, I've wondering if we can improve this bound, or even better explicitly find the max.



Edit
Since $2b$ is a valid period, if $T_0$ is a fundamental period we know that $T_0mid 2b$. Moreover, we know that any period must be even due to $rho_{a/b}(T_0)=0$ so that there can be an equal number of negative terms as even terms. Thus $T_0=2d$ for some $dmid b$. We know that for whatever $T_0$ we find that
$$max |rho_{a/b}(n)|le T_0/2$$
however, the function rarely achieves this maximum of $T_0/2$.



Edit 2 Let $M(a,b)=max |rho_{a/b}(n)|$. As noted we have that $M(a_1,b)=M(a_2,b)$ if $a_1equiv a_2mod 2b$. Hence for fixed $b$, it suffices to analyze $ain [-b,b]$. Notice that we have
$$leftlfloorfrac{-ak}{b}rightrfloor=begin{cases}
-leftlfloorfrac{ak}{b}rightrfloor - 1 & bnmid k \
-leftlfloorfrac{ak}{b}rightrfloor & bmid k
end{cases}.$$

Hence,
$$rho_{a/b}(n)+rho_{-a/b}(n)=2sum_{substack{k=1 \ bmid k}}^n(-1)^{leftlfloorfrac{ak}{b}rightrfloor}=2sum_{k=1}^{lfloor n/brfloor}(-1)^k=begin{cases}
-2 & 2nmid lfloor n/brfloor \
0 & 2mid lfloor n/brfloor
end{cases}.$$

Thus
$$|M(a,b)-M(-a,b)|le 2.$$
Thus to properly analyze bounds on $M(a,b)$ it suffices to analyze $M(a,b)$ for $ain [1,b]$.










share|cite|improve this question
























  • It’s interesting to note that $rho_{(a+2b)/b}(x)=rho_{a/b}(x)$ since $(-1)^{lfloor (a+2b)k/b rfloor}=(-1)^{lfloor ak/b + 2krfloor}=(-1)^{lfloor ak/b rfloor}$, so we have another period of $2b$. Also, by comparing terms, we have $rho_{a/b}(x)+rho_{a/b+1}(x)=rho_{2a/b}(lfloor x/2 rfloor)$, which may be of use as well.
    – Jacob
    2 days ago

















up vote
3
down vote

favorite
1












Let $a,binmathbb{N}$ such that $(a,b)=1$. If $2nmid a$, then one can show that
$$rho_{a/b}(n)=sum_{k=1}^n (-1)^{lfloor ak/brfloor}$$
is periodic. Is there any explicit way to give the maximum of $|rho_{a/b}(n)|$ in terms of $a$ and $b$? As a first attempt we can show that
$$rho_{a/b}(n+b)=sum_{k=1}^{n+b}(-1)^{lfloor ak/brfloor}=rho_{a/b}(b)+sum_{k=1}^n(-1)^{lfloor a(k+b)/brfloor}=rho_{a/b}(b)+(-1)^arho_{a/b}(n).$$
Since we assume that $2nmid a$ we have that $rho_{a/b}(n+2b)=rho_{a/b}(n)$ meaning the period is $le 2b$. Since the function starts at $0$ and $rho_{a/b}(2b)=0$, combined with the fact that it moves in discrete steps, gives
$$max|rho_{a/b}(n)|le b.$$
However, I've noticed that the maximum doesn't seem to depend too reliably on just $b$. If you fix $b$ you can achieve a whole spectrum of bounds by adjusting $a$. Hence, I've wondering if we can improve this bound, or even better explicitly find the max.



Edit
Since $2b$ is a valid period, if $T_0$ is a fundamental period we know that $T_0mid 2b$. Moreover, we know that any period must be even due to $rho_{a/b}(T_0)=0$ so that there can be an equal number of negative terms as even terms. Thus $T_0=2d$ for some $dmid b$. We know that for whatever $T_0$ we find that
$$max |rho_{a/b}(n)|le T_0/2$$
however, the function rarely achieves this maximum of $T_0/2$.



Edit 2 Let $M(a,b)=max |rho_{a/b}(n)|$. As noted we have that $M(a_1,b)=M(a_2,b)$ if $a_1equiv a_2mod 2b$. Hence for fixed $b$, it suffices to analyze $ain [-b,b]$. Notice that we have
$$leftlfloorfrac{-ak}{b}rightrfloor=begin{cases}
-leftlfloorfrac{ak}{b}rightrfloor - 1 & bnmid k \
-leftlfloorfrac{ak}{b}rightrfloor & bmid k
end{cases}.$$

Hence,
$$rho_{a/b}(n)+rho_{-a/b}(n)=2sum_{substack{k=1 \ bmid k}}^n(-1)^{leftlfloorfrac{ak}{b}rightrfloor}=2sum_{k=1}^{lfloor n/brfloor}(-1)^k=begin{cases}
-2 & 2nmid lfloor n/brfloor \
0 & 2mid lfloor n/brfloor
end{cases}.$$

Thus
$$|M(a,b)-M(-a,b)|le 2.$$
Thus to properly analyze bounds on $M(a,b)$ it suffices to analyze $M(a,b)$ for $ain [1,b]$.










share|cite|improve this question
























  • It’s interesting to note that $rho_{(a+2b)/b}(x)=rho_{a/b}(x)$ since $(-1)^{lfloor (a+2b)k/b rfloor}=(-1)^{lfloor ak/b + 2krfloor}=(-1)^{lfloor ak/b rfloor}$, so we have another period of $2b$. Also, by comparing terms, we have $rho_{a/b}(x)+rho_{a/b+1}(x)=rho_{2a/b}(lfloor x/2 rfloor)$, which may be of use as well.
    – Jacob
    2 days ago















up vote
3
down vote

favorite
1









up vote
3
down vote

favorite
1






1





Let $a,binmathbb{N}$ such that $(a,b)=1$. If $2nmid a$, then one can show that
$$rho_{a/b}(n)=sum_{k=1}^n (-1)^{lfloor ak/brfloor}$$
is periodic. Is there any explicit way to give the maximum of $|rho_{a/b}(n)|$ in terms of $a$ and $b$? As a first attempt we can show that
$$rho_{a/b}(n+b)=sum_{k=1}^{n+b}(-1)^{lfloor ak/brfloor}=rho_{a/b}(b)+sum_{k=1}^n(-1)^{lfloor a(k+b)/brfloor}=rho_{a/b}(b)+(-1)^arho_{a/b}(n).$$
Since we assume that $2nmid a$ we have that $rho_{a/b}(n+2b)=rho_{a/b}(n)$ meaning the period is $le 2b$. Since the function starts at $0$ and $rho_{a/b}(2b)=0$, combined with the fact that it moves in discrete steps, gives
$$max|rho_{a/b}(n)|le b.$$
However, I've noticed that the maximum doesn't seem to depend too reliably on just $b$. If you fix $b$ you can achieve a whole spectrum of bounds by adjusting $a$. Hence, I've wondering if we can improve this bound, or even better explicitly find the max.



Edit
Since $2b$ is a valid period, if $T_0$ is a fundamental period we know that $T_0mid 2b$. Moreover, we know that any period must be even due to $rho_{a/b}(T_0)=0$ so that there can be an equal number of negative terms as even terms. Thus $T_0=2d$ for some $dmid b$. We know that for whatever $T_0$ we find that
$$max |rho_{a/b}(n)|le T_0/2$$
however, the function rarely achieves this maximum of $T_0/2$.



Edit 2 Let $M(a,b)=max |rho_{a/b}(n)|$. As noted we have that $M(a_1,b)=M(a_2,b)$ if $a_1equiv a_2mod 2b$. Hence for fixed $b$, it suffices to analyze $ain [-b,b]$. Notice that we have
$$leftlfloorfrac{-ak}{b}rightrfloor=begin{cases}
-leftlfloorfrac{ak}{b}rightrfloor - 1 & bnmid k \
-leftlfloorfrac{ak}{b}rightrfloor & bmid k
end{cases}.$$

Hence,
$$rho_{a/b}(n)+rho_{-a/b}(n)=2sum_{substack{k=1 \ bmid k}}^n(-1)^{leftlfloorfrac{ak}{b}rightrfloor}=2sum_{k=1}^{lfloor n/brfloor}(-1)^k=begin{cases}
-2 & 2nmid lfloor n/brfloor \
0 & 2mid lfloor n/brfloor
end{cases}.$$

Thus
$$|M(a,b)-M(-a,b)|le 2.$$
Thus to properly analyze bounds on $M(a,b)$ it suffices to analyze $M(a,b)$ for $ain [1,b]$.










share|cite|improve this question















Let $a,binmathbb{N}$ such that $(a,b)=1$. If $2nmid a$, then one can show that
$$rho_{a/b}(n)=sum_{k=1}^n (-1)^{lfloor ak/brfloor}$$
is periodic. Is there any explicit way to give the maximum of $|rho_{a/b}(n)|$ in terms of $a$ and $b$? As a first attempt we can show that
$$rho_{a/b}(n+b)=sum_{k=1}^{n+b}(-1)^{lfloor ak/brfloor}=rho_{a/b}(b)+sum_{k=1}^n(-1)^{lfloor a(k+b)/brfloor}=rho_{a/b}(b)+(-1)^arho_{a/b}(n).$$
Since we assume that $2nmid a$ we have that $rho_{a/b}(n+2b)=rho_{a/b}(n)$ meaning the period is $le 2b$. Since the function starts at $0$ and $rho_{a/b}(2b)=0$, combined with the fact that it moves in discrete steps, gives
$$max|rho_{a/b}(n)|le b.$$
However, I've noticed that the maximum doesn't seem to depend too reliably on just $b$. If you fix $b$ you can achieve a whole spectrum of bounds by adjusting $a$. Hence, I've wondering if we can improve this bound, or even better explicitly find the max.



Edit
Since $2b$ is a valid period, if $T_0$ is a fundamental period we know that $T_0mid 2b$. Moreover, we know that any period must be even due to $rho_{a/b}(T_0)=0$ so that there can be an equal number of negative terms as even terms. Thus $T_0=2d$ for some $dmid b$. We know that for whatever $T_0$ we find that
$$max |rho_{a/b}(n)|le T_0/2$$
however, the function rarely achieves this maximum of $T_0/2$.



Edit 2 Let $M(a,b)=max |rho_{a/b}(n)|$. As noted we have that $M(a_1,b)=M(a_2,b)$ if $a_1equiv a_2mod 2b$. Hence for fixed $b$, it suffices to analyze $ain [-b,b]$. Notice that we have
$$leftlfloorfrac{-ak}{b}rightrfloor=begin{cases}
-leftlfloorfrac{ak}{b}rightrfloor - 1 & bnmid k \
-leftlfloorfrac{ak}{b}rightrfloor & bmid k
end{cases}.$$

Hence,
$$rho_{a/b}(n)+rho_{-a/b}(n)=2sum_{substack{k=1 \ bmid k}}^n(-1)^{leftlfloorfrac{ak}{b}rightrfloor}=2sum_{k=1}^{lfloor n/brfloor}(-1)^k=begin{cases}
-2 & 2nmid lfloor n/brfloor \
0 & 2mid lfloor n/brfloor
end{cases}.$$

Thus
$$|M(a,b)-M(-a,b)|le 2.$$
Thus to properly analyze bounds on $M(a,b)$ it suffices to analyze $M(a,b)$ for $ain [1,b]$.







real-analysis number-theory elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 14 hours ago

























asked Nov 18 at 22:03









Will Fisher

3,547729




3,547729












  • It’s interesting to note that $rho_{(a+2b)/b}(x)=rho_{a/b}(x)$ since $(-1)^{lfloor (a+2b)k/b rfloor}=(-1)^{lfloor ak/b + 2krfloor}=(-1)^{lfloor ak/b rfloor}$, so we have another period of $2b$. Also, by comparing terms, we have $rho_{a/b}(x)+rho_{a/b+1}(x)=rho_{2a/b}(lfloor x/2 rfloor)$, which may be of use as well.
    – Jacob
    2 days ago




















  • It’s interesting to note that $rho_{(a+2b)/b}(x)=rho_{a/b}(x)$ since $(-1)^{lfloor (a+2b)k/b rfloor}=(-1)^{lfloor ak/b + 2krfloor}=(-1)^{lfloor ak/b rfloor}$, so we have another period of $2b$. Also, by comparing terms, we have $rho_{a/b}(x)+rho_{a/b+1}(x)=rho_{2a/b}(lfloor x/2 rfloor)$, which may be of use as well.
    – Jacob
    2 days ago


















It’s interesting to note that $rho_{(a+2b)/b}(x)=rho_{a/b}(x)$ since $(-1)^{lfloor (a+2b)k/b rfloor}=(-1)^{lfloor ak/b + 2krfloor}=(-1)^{lfloor ak/b rfloor}$, so we have another period of $2b$. Also, by comparing terms, we have $rho_{a/b}(x)+rho_{a/b+1}(x)=rho_{2a/b}(lfloor x/2 rfloor)$, which may be of use as well.
– Jacob
2 days ago






It’s interesting to note that $rho_{(a+2b)/b}(x)=rho_{a/b}(x)$ since $(-1)^{lfloor (a+2b)k/b rfloor}=(-1)^{lfloor ak/b + 2krfloor}=(-1)^{lfloor ak/b rfloor}$, so we have another period of $2b$. Also, by comparing terms, we have $rho_{a/b}(x)+rho_{a/b+1}(x)=rho_{2a/b}(lfloor x/2 rfloor)$, which may be of use as well.
– Jacob
2 days ago

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004189%2fmaximum-value-of-sum-k-1n-1-lfloor-ak-b-rfloor%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004189%2fmaximum-value-of-sum-k-1n-1-lfloor-ak-b-rfloor%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

Npm cannot find a required file even through it is in the searched directory