Completing the square to decompose quadratic forms in three variables
up vote
0
down vote
favorite
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |
up vote
0
down vote
favorite
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
2 days ago
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Given the quadratic form $Q(textbf{x}) = x^2 + 2xy - 4xz +2yz -4z^2$, the question asks to decompose $Q$ into sums of squares, first by eliminating terms in $z$, then terms in $y$, and then terms in $x$.
I know the signature of $Q$ is $(2,1)$ from the solution, but I'm at a loss for how to actually perform what the question is asking. For instance, I recognize that I can take the terms in $x$ and $z$ and form $(x-2z)^2$, but I don't really see what to do next. Any suggestions?
real-analysis quadratic-forms
real-analysis quadratic-forms
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked 2 days ago
Matt Swanson
132
132
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Matt Swanson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
2 days ago
add a comment |
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
2 days ago
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
2 days ago
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
add a comment |
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
add a comment |
up vote
0
down vote
up vote
0
down vote
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
a method. Usually we take the matrix $H$ to be the Hessian matrix of second partial derivatives. In the special case of integer coefficients with all the mixed coefficent terms even, we can get $H$ all integers by taking half the Hessian matrix.
Outcome this time:
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
It is the diagonal elements of $D$ and the rows of $Q$ that give the expression,
$$ color{red}{ (x+y-2z)^2 - (y-3z)^2 + z^2 } $$
Algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
$$ D_0 = H $$
$$ E_j^T D_{j-1} E_j = D_j $$
$$ P_{j-1} E_j = P_j $$
$$ E_j^{-1} Q_{j-1} = Q_j $$
$$ P_j Q_j = Q_j P_j = I $$
$$ P_j^T H P_j = D_j $$
$$ Q_j^T D_j Q_j = H $$
$$ H = left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{1} = left(
begin{array}{rrr}
1 & - 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{1} = left(
begin{array}{rrr}
1 & 1 & 0 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{1} = left(
begin{array}{rrr}
1 & 0 & - 2 \
0 & - 1 & 3 \
- 2 & 3 & - 4 \
end{array}
right)
$$
==============================================
$$ E_{2} = left(
begin{array}{rrr}
1 & 0 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{2} = left(
begin{array}{rrr}
1 & - 1 & 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{2} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & 0 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{2} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 3 \
0 & 3 & - 8 \
end{array}
right)
$$
==============================================
$$ E_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
$$
$$ P_{3} = left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; Q_{3} = left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
, ; ; ; D_{3} = left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
==============================================
$$ P^T H P = D $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
- 1 & 1 & 0 \
- 1 & 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
left(
begin{array}{rrr}
1 & - 1 & - 1 \
0 & 1 & 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
$$
$$ Q^T D Q = H $$
$$left(
begin{array}{rrr}
1 & 0 & 0 \
1 & 1 & 0 \
- 2 & - 3 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 0 & 0 \
0 & - 1 & 0 \
0 & 0 & 1 \
end{array}
right)
left(
begin{array}{rrr}
1 & 1 & - 2 \
0 & 1 & - 3 \
0 & 0 & 1 \
end{array}
right)
= left(
begin{array}{rrr}
1 & 1 & - 2 \
1 & 0 & 1 \
- 2 & 1 & - 4 \
end{array}
right)
$$
answered 2 days ago
Will Jagy
100k597198
100k597198
add a comment |
add a comment |
Matt Swanson is a new contributor. Be nice, and check out our Code of Conduct.
Matt Swanson is a new contributor. Be nice, and check out our Code of Conduct.
Matt Swanson is a new contributor. Be nice, and check out our Code of Conduct.
Matt Swanson is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005447%2fcompleting-the-square-to-decompose-quadratic-forms-in-three-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Is there a typo? $(x-2z)^2$ doesn't give $-4z^2.$
– user376343
2 days ago