Problem with logarithmic equation. [on hold]











up vote
-1
down vote

favorite












I want to solve this problem, when I tried to differentiate both sides I didn't get the answer. I need to know why, and, secondly I need to know how to solve this problem:
$$ln x = frac{1}{x}-1$$



Differentiating both sides with respect to $x$ does not work.



ADDED: I need a solution method that does not use graphing, sketching, or "trying" (also called "guess-and-check"). The method needs to find all the solutions.










share|cite|improve this question









New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











put on hold as unclear what you're asking by Chase Ryan Taylor, Lord Shark the Unknown, Leucippus, jgon, Cesareo 2 days ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.











  • 6




    What's the question? Do you want to find a particular value of $x$ such that $ln(x) =frac 1x-1$? Why would you differentiate both sides?
    – lulu
    2 days ago












  • Hint: it is easy to guess a solution but then you need to argue that the solution is unique. But a quick sketch of the two functions should tell you how to do that.
    – lulu
    2 days ago










  • Yes i want the particular solution and want to know if it is the only solution without graphing
    – mahmoud solyman
    2 days ago










  • If you differentiate both sides you will get that the left hand side is an increasing function and the right hand side is a decreasing function. Which would suggest that there is at most one solution. Though, It would be cleaner to say that $frac {d}{dx} [ln x - (frac 1x - 1)] > 0$
    – Doug M
    2 days ago












  • It's clear thank you , and how can i solve the equation without sketching 😅
    – mahmoud solyman
    2 days ago















up vote
-1
down vote

favorite












I want to solve this problem, when I tried to differentiate both sides I didn't get the answer. I need to know why, and, secondly I need to know how to solve this problem:
$$ln x = frac{1}{x}-1$$



Differentiating both sides with respect to $x$ does not work.



ADDED: I need a solution method that does not use graphing, sketching, or "trying" (also called "guess-and-check"). The method needs to find all the solutions.










share|cite|improve this question









New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











put on hold as unclear what you're asking by Chase Ryan Taylor, Lord Shark the Unknown, Leucippus, jgon, Cesareo 2 days ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.











  • 6




    What's the question? Do you want to find a particular value of $x$ such that $ln(x) =frac 1x-1$? Why would you differentiate both sides?
    – lulu
    2 days ago












  • Hint: it is easy to guess a solution but then you need to argue that the solution is unique. But a quick sketch of the two functions should tell you how to do that.
    – lulu
    2 days ago










  • Yes i want the particular solution and want to know if it is the only solution without graphing
    – mahmoud solyman
    2 days ago










  • If you differentiate both sides you will get that the left hand side is an increasing function and the right hand side is a decreasing function. Which would suggest that there is at most one solution. Though, It would be cleaner to say that $frac {d}{dx} [ln x - (frac 1x - 1)] > 0$
    – Doug M
    2 days ago












  • It's clear thank you , and how can i solve the equation without sketching 😅
    – mahmoud solyman
    2 days ago













up vote
-1
down vote

favorite









up vote
-1
down vote

favorite











I want to solve this problem, when I tried to differentiate both sides I didn't get the answer. I need to know why, and, secondly I need to know how to solve this problem:
$$ln x = frac{1}{x}-1$$



Differentiating both sides with respect to $x$ does not work.



ADDED: I need a solution method that does not use graphing, sketching, or "trying" (also called "guess-and-check"). The method needs to find all the solutions.










share|cite|improve this question









New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I want to solve this problem, when I tried to differentiate both sides I didn't get the answer. I need to know why, and, secondly I need to know how to solve this problem:
$$ln x = frac{1}{x}-1$$



Differentiating both sides with respect to $x$ does not work.



ADDED: I need a solution method that does not use graphing, sketching, or "trying" (also called "guess-and-check"). The method needs to find all the solutions.







calculus algebra-precalculus






share|cite|improve this question









New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Rory Daulton

29.3k53254




29.3k53254






New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









mahmoud solyman

4




4




New contributor




mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






mahmoud solyman is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as unclear what you're asking by Chase Ryan Taylor, Lord Shark the Unknown, Leucippus, jgon, Cesareo 2 days ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.






put on hold as unclear what you're asking by Chase Ryan Taylor, Lord Shark the Unknown, Leucippus, jgon, Cesareo 2 days ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.










  • 6




    What's the question? Do you want to find a particular value of $x$ such that $ln(x) =frac 1x-1$? Why would you differentiate both sides?
    – lulu
    2 days ago












  • Hint: it is easy to guess a solution but then you need to argue that the solution is unique. But a quick sketch of the two functions should tell you how to do that.
    – lulu
    2 days ago










  • Yes i want the particular solution and want to know if it is the only solution without graphing
    – mahmoud solyman
    2 days ago










  • If you differentiate both sides you will get that the left hand side is an increasing function and the right hand side is a decreasing function. Which would suggest that there is at most one solution. Though, It would be cleaner to say that $frac {d}{dx} [ln x - (frac 1x - 1)] > 0$
    – Doug M
    2 days ago












  • It's clear thank you , and how can i solve the equation without sketching 😅
    – mahmoud solyman
    2 days ago














  • 6




    What's the question? Do you want to find a particular value of $x$ such that $ln(x) =frac 1x-1$? Why would you differentiate both sides?
    – lulu
    2 days ago












  • Hint: it is easy to guess a solution but then you need to argue that the solution is unique. But a quick sketch of the two functions should tell you how to do that.
    – lulu
    2 days ago










  • Yes i want the particular solution and want to know if it is the only solution without graphing
    – mahmoud solyman
    2 days ago










  • If you differentiate both sides you will get that the left hand side is an increasing function and the right hand side is a decreasing function. Which would suggest that there is at most one solution. Though, It would be cleaner to say that $frac {d}{dx} [ln x - (frac 1x - 1)] > 0$
    – Doug M
    2 days ago












  • It's clear thank you , and how can i solve the equation without sketching 😅
    – mahmoud solyman
    2 days ago








6




6




What's the question? Do you want to find a particular value of $x$ such that $ln(x) =frac 1x-1$? Why would you differentiate both sides?
– lulu
2 days ago






What's the question? Do you want to find a particular value of $x$ such that $ln(x) =frac 1x-1$? Why would you differentiate both sides?
– lulu
2 days ago














Hint: it is easy to guess a solution but then you need to argue that the solution is unique. But a quick sketch of the two functions should tell you how to do that.
– lulu
2 days ago




Hint: it is easy to guess a solution but then you need to argue that the solution is unique. But a quick sketch of the two functions should tell you how to do that.
– lulu
2 days ago












Yes i want the particular solution and want to know if it is the only solution without graphing
– mahmoud solyman
2 days ago




Yes i want the particular solution and want to know if it is the only solution without graphing
– mahmoud solyman
2 days ago












If you differentiate both sides you will get that the left hand side is an increasing function and the right hand side is a decreasing function. Which would suggest that there is at most one solution. Though, It would be cleaner to say that $frac {d}{dx} [ln x - (frac 1x - 1)] > 0$
– Doug M
2 days ago






If you differentiate both sides you will get that the left hand side is an increasing function and the right hand side is a decreasing function. Which would suggest that there is at most one solution. Though, It would be cleaner to say that $frac {d}{dx} [ln x - (frac 1x - 1)] > 0$
– Doug M
2 days ago














It's clear thank you , and how can i solve the equation without sketching 😅
– mahmoud solyman
2 days ago




It's clear thank you , and how can i solve the equation without sketching 😅
– mahmoud solyman
2 days ago










1 Answer
1






active

oldest

votes

















up vote
1
down vote













You say that you need a solution method without sketching and without "trying" (also called "guess-and-check"). Here is a solution using the Lambert W function. I assume that you want to find all real-number solutions to your equation.



$$ln x=frac 1x-1$$
$$e^{ln x}=e^{1/x-1}$$
$$x=e^{1/x}cdot e^{-1}$$
$$e=frac 1xcdot e^{1/x}$$
$$frac 1x=W(e)$$



That last transition is due to the definition of the Lambert W function. Continuing,



$$x=dfrac 1{W(e)}$$
$$x=frac 11$$



That last is a well-known special value of the Lambert W function. This is not "trying" or "guess-and-check", it is a specific value of a specific well-known function. So we end up with



$$x=1$$



We substitute that back into the original solution as a check, and it works.



This is an algebraic solution, using a well-known special function. There is one possible criticism of this solution method. The Lambert W function has infinitely many branches, two of them dealing with real number values. However, only one branch gives a real value at the parameter value $e$, and that real value is one. That justifies the use of only one branch of the function and one result. If you allow complex number solutions, other branches could be used to get the other values. (There are a few complications for complex number solutions of this equation that I'll ignore here--they are not relevant for real number solutions.) If you would like some of those other values, let me know and I can calculate close approximations of them for you.






share|cite|improve this answer






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    You say that you need a solution method without sketching and without "trying" (also called "guess-and-check"). Here is a solution using the Lambert W function. I assume that you want to find all real-number solutions to your equation.



    $$ln x=frac 1x-1$$
    $$e^{ln x}=e^{1/x-1}$$
    $$x=e^{1/x}cdot e^{-1}$$
    $$e=frac 1xcdot e^{1/x}$$
    $$frac 1x=W(e)$$



    That last transition is due to the definition of the Lambert W function. Continuing,



    $$x=dfrac 1{W(e)}$$
    $$x=frac 11$$



    That last is a well-known special value of the Lambert W function. This is not "trying" or "guess-and-check", it is a specific value of a specific well-known function. So we end up with



    $$x=1$$



    We substitute that back into the original solution as a check, and it works.



    This is an algebraic solution, using a well-known special function. There is one possible criticism of this solution method. The Lambert W function has infinitely many branches, two of them dealing with real number values. However, only one branch gives a real value at the parameter value $e$, and that real value is one. That justifies the use of only one branch of the function and one result. If you allow complex number solutions, other branches could be used to get the other values. (There are a few complications for complex number solutions of this equation that I'll ignore here--they are not relevant for real number solutions.) If you would like some of those other values, let me know and I can calculate close approximations of them for you.






    share|cite|improve this answer



























      up vote
      1
      down vote













      You say that you need a solution method without sketching and without "trying" (also called "guess-and-check"). Here is a solution using the Lambert W function. I assume that you want to find all real-number solutions to your equation.



      $$ln x=frac 1x-1$$
      $$e^{ln x}=e^{1/x-1}$$
      $$x=e^{1/x}cdot e^{-1}$$
      $$e=frac 1xcdot e^{1/x}$$
      $$frac 1x=W(e)$$



      That last transition is due to the definition of the Lambert W function. Continuing,



      $$x=dfrac 1{W(e)}$$
      $$x=frac 11$$



      That last is a well-known special value of the Lambert W function. This is not "trying" or "guess-and-check", it is a specific value of a specific well-known function. So we end up with



      $$x=1$$



      We substitute that back into the original solution as a check, and it works.



      This is an algebraic solution, using a well-known special function. There is one possible criticism of this solution method. The Lambert W function has infinitely many branches, two of them dealing with real number values. However, only one branch gives a real value at the parameter value $e$, and that real value is one. That justifies the use of only one branch of the function and one result. If you allow complex number solutions, other branches could be used to get the other values. (There are a few complications for complex number solutions of this equation that I'll ignore here--they are not relevant for real number solutions.) If you would like some of those other values, let me know and I can calculate close approximations of them for you.






      share|cite|improve this answer

























        up vote
        1
        down vote










        up vote
        1
        down vote









        You say that you need a solution method without sketching and without "trying" (also called "guess-and-check"). Here is a solution using the Lambert W function. I assume that you want to find all real-number solutions to your equation.



        $$ln x=frac 1x-1$$
        $$e^{ln x}=e^{1/x-1}$$
        $$x=e^{1/x}cdot e^{-1}$$
        $$e=frac 1xcdot e^{1/x}$$
        $$frac 1x=W(e)$$



        That last transition is due to the definition of the Lambert W function. Continuing,



        $$x=dfrac 1{W(e)}$$
        $$x=frac 11$$



        That last is a well-known special value of the Lambert W function. This is not "trying" or "guess-and-check", it is a specific value of a specific well-known function. So we end up with



        $$x=1$$



        We substitute that back into the original solution as a check, and it works.



        This is an algebraic solution, using a well-known special function. There is one possible criticism of this solution method. The Lambert W function has infinitely many branches, two of them dealing with real number values. However, only one branch gives a real value at the parameter value $e$, and that real value is one. That justifies the use of only one branch of the function and one result. If you allow complex number solutions, other branches could be used to get the other values. (There are a few complications for complex number solutions of this equation that I'll ignore here--they are not relevant for real number solutions.) If you would like some of those other values, let me know and I can calculate close approximations of them for you.






        share|cite|improve this answer














        You say that you need a solution method without sketching and without "trying" (also called "guess-and-check"). Here is a solution using the Lambert W function. I assume that you want to find all real-number solutions to your equation.



        $$ln x=frac 1x-1$$
        $$e^{ln x}=e^{1/x-1}$$
        $$x=e^{1/x}cdot e^{-1}$$
        $$e=frac 1xcdot e^{1/x}$$
        $$frac 1x=W(e)$$



        That last transition is due to the definition of the Lambert W function. Continuing,



        $$x=dfrac 1{W(e)}$$
        $$x=frac 11$$



        That last is a well-known special value of the Lambert W function. This is not "trying" or "guess-and-check", it is a specific value of a specific well-known function. So we end up with



        $$x=1$$



        We substitute that back into the original solution as a check, and it works.



        This is an algebraic solution, using a well-known special function. There is one possible criticism of this solution method. The Lambert W function has infinitely many branches, two of them dealing with real number values. However, only one branch gives a real value at the parameter value $e$, and that real value is one. That justifies the use of only one branch of the function and one result. If you allow complex number solutions, other branches could be used to get the other values. (There are a few complications for complex number solutions of this equation that I'll ignore here--they are not relevant for real number solutions.) If you would like some of those other values, let me know and I can calculate close approximations of them for you.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago

























        answered 2 days ago









        Rory Daulton

        29.3k53254




        29.3k53254















            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            Npm cannot find a required file even through it is in the searched directory